首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以铜网为基底,通过浸涂法在其表面制得超疏水超亲油有机-无机复合薄膜,水滴、油滴在其表面的接触角分别为152°和10°。线性低密度聚乙烯-SiO_2纳米球构成的复合阶层结构及低表面能线性低密度聚乙烯涂层的协同作用使铜网产生独特的润湿性。该铜网具有很好的自清洁性和抗腐蚀性,可用于油水混合物的有效分离。与传统方法相比,该方法制备超疏水-超亲油薄膜方法简单、成本低、无氟,有望在实践中得到应用。  相似文献   

2.
通过静态接触角(CA)和扫描电子显微镜(SEM)分析了芋叶的超疏水超亲油性能. 考察了不同处理温度下芋叶的饱和吸油率、缓释保油率以及离心保油率. 结果表明, 芋叶下表面具有超疏水性能, 其静态水接触角为157.1°(滚动角小于3°), 远大于上表面静态水接触角(109.1°). 不同温度处理的芋叶的饱和吸油率的变化呈现一定规律, 在200 ℃下干燥的芋叶具有最高饱和吸油率(8.1 g/g). 芋叶对难挥发性的机油固定能力较强, 并且在较高转速下对机油仍具有较高的离心保油率.  相似文献   

3.
超疏水超亲油材料因其在油水分离等领域有广泛的应用前景而引起人们极大关注。 目前,有很多方法可以用来制备超疏水超亲油材料,但因其过程复杂、成本高、环境适应性差限制了其在实际生产、生活中应用。 本文以玉米秸秆为原料,经TiO2 溶胶浸涂并经辛基三甲氧基硅烷修饰后显示出超疏水和超亲油,水滴、油滴在其表面的接触角分别为160°和0°。 研究结果显示,玉米秸秆粉表面的超疏水性源于其表面微纳米复合阶层结构及低表面能化学组成的协同作用。 利用玉米秸秆粉表面的憎水性和亲油性,能将其用于水面油污的吸附和分离,具有分离效率高、稳定性好、可循环利用的优点。 相比于其它材料,以玉米秸秆为原料制备超疏水超亲油的油污吸附剂,原料丰富、成本低、过程简单、易降解、可循环利用,有望在生产、生活中得到应用。  相似文献   

4.
郑建勇  冯杰  钟明强 《高分子学报》2010,(10):1186-1192
以碳酸钙(CaCO3)颗粒层为模板,运用简单的热压和酸蚀刻相结合的方法制备聚合物超亲水/超疏水表面.首先在玻璃基底上均匀铺撒一层CaCO3颗粒,以此作为模板,通过热压线性低密度聚乙烯(LLDPE)使CaCO3颗粒均匀镶嵌在聚合物表面,获得了超亲水性质;进一步经酸蚀得到了具有微米和亚微米多孔结构的表面,其水滴静态接触角(WCA)可达(152.7±0.8)°,滚动角小于3°,具备超疏水性质.表面浸润性能和耐水压冲击性能研究表明该超疏水表面具有良好的稳定性和持久性.用同样工艺微模塑/酸蚀刻其它疏水性聚合物,得到类似结果.  相似文献   

5.
王凤平  闫姝均 《应用化学》2012,29(11):1291-1296
以棕榈酸-乙醇溶液为疏水剂,利用直接浸泡法在纯铜表面上构筑了超疏水薄膜。 纯铜表面超疏水薄膜的最佳制备条件为:0.03 mol/L棕榈酸-乙醇溶液,室温(20~22 ℃),浸泡144 h。 通过扫描电子显微镜、接触角测量仪、红外光谱仪和高精密电子天平对超疏水表面进行了表征和分析。 实验结果表明,纯铜试样表面形成了100~200 μm大小的草状棕榈酸铜微簇,接触角达到了150°,其具有较好的抗结垢性能。  相似文献   

6.
静电纺丝制备超疏水TiO2纳米纤维网膜   总被引:4,自引:1,他引:3  
采用静电纺丝技术构筑粗糙表面, 再使用廉价的低表面能物质硅油在煅烧过程中进行同步修饰, 制备出接触角大于150°, 滚动角小于5°的TiO2超疏水表面. 该超疏水表面具有由TiO2纳米纤维和微米尺寸颗粒状硅油高温分解产物织构而成的纳米纤维网膜结构, 这种特殊的微纳米复合粗糙结构和疏水性硅油分解产物的修饰作用导致TiO2纳米纤维网膜的超疏水性. 这种超疏水的TiO2材料为超疏水材料在防水织物、无损失液体运输和微流体等领域的应用提供了新的研究视野.  相似文献   

7.
石彦龙  冯晓娟  康恺  侯杨 《应用化学》2019,36(3):358-366
超疏水-超疏油材料在防污、防水、防油等领域有广泛的应用前景而引起人们极度关注。 本文用全氟辛酸溶液浸泡锌粉制得超疏水-超疏油锌粉,用聚乙烯醇胶将超疏水-超疏油锌粉粘合、固定到玻璃、木头、塑料、不锈钢、纸片、石头表面后可制得超疏水-超疏油表面,水滴、油滴在其表面的接触角均超过150°。 锌粉与全氟辛酸反应后生成Zn[CF3(CF2)6COO]2,氟代长链烷基的低表面能化学组成与微纳米粗糙结构的协调作用使其表现出超疏水、超疏油性能。 相关研究有望为超双疏材料的设计、制备及其在自清洁、防水防油及抗污等领域的应用提供借鉴。  相似文献   

8.
超疏水超亲油材料因其在油水分离等领域有广泛的应用前景而引起人们极大关注。目前,有很多方法可以用来制备超疏水超亲油材料,但因其过程复杂、成本高、环境适应性差限制了其在实际生产、生活中应用。本文以玉米秸秆为原料,经TiO_2溶胶浸涂并经辛基三甲氧基硅烷修饰后显示出超疏水和超亲油,水滴、油滴在其表面的接触角分别为160°和0°。研究结果显示,玉米秸秆粉表面的超疏水性源于其表面微纳米复合阶层结构及低表面能化学组成的协同作用。利用玉米秸秆粉表面的憎水性和亲油性,能将其用于水面油污的吸附和分离,具有分离效率高、稳定性好、可循环利用的优点。相比于其它材料,以玉米秸秆为原料制备超疏水超亲油的油污吸附剂,原料丰富、成本低、过程简单、易降解、可循环利用,有望在生产、生活中得到应用。  相似文献   

9.
通过聚二甲基硅氧烷(PDMS)与碳纤维织物复合, 采用模板法在PDMS聚合物表面构筑微阵列结构, 制备了一种具有可重复粘贴性的超疏水薄膜. 研究结果表明, 该薄膜微结构表面的接触角为154°, 滚动角为14°, 具有低黏附的超疏水特性. 而PDMS与碳纤维织物的紧密结合, 赋予了超疏水薄膜较高的黏接力和力学性能, 断裂强度达到116.96 MPa. 所制备的超疏水薄膜可粘贴于多种材料表面, 同时经过30 d的长时间粘贴以及50次的循环粘贴后, 该薄膜依然保持着较高的黏附性能及超疏水特征, 表明超疏水薄膜具有良好的力学稳定性及耐久性, 满足长时间可重复使用的要求, 可应用于对破损超疏水涂层的快速、 大面积粘贴修复.  相似文献   

10.
采用溶胶-凝胶法制得Zn O溶胶,以棉织物为基底,在其表面浸涂Zn O溶胶,再经辛基三甲氧基硅烷表面修饰后显示出超疏水性和超亲油性,水滴和油滴在其表面的接触角分别为152°和0°.利用棉织物表面的超疏水性和超亲油性,可以实现对油水混合物中油和水的有效分离.为防水服饰的设计、超疏水/超亲油材料的制备及在油水混合物的分离与应用提供借鉴.  相似文献   

11.
表面修饰引发的ZnO纳米棒阵列膜的超疏水性   总被引:7,自引:0,他引:7  
润湿性是固体表面的重要性质之一 ,它受控于固体表面自由能和表面粗糙度的大小 ,一般可用液体在固体表面接触角的大小来衡量 .由于水与超疏水表面 (水与固体表面的接触角大于 1 5 0°的表面 )的接触面积很小 ,通过水所发生的化学发应和化学键的形成受到限制 ,使这种表面具有防水、防污染和防氧化等多种功能 ,因而备受人们的关注 [1~ 6 ] .作为宽禁带半导体材料 ,Zn O以其独特的光电和催化等性质在短波激光器、气体传感器、高效催化剂、太阳能电池等方面具有广阔的应用前景 .表面润湿性的研究对于将 Zn O用于各种器件非常重要 .Pesika等 […  相似文献   

12.
A simple technique was developed for the fabrication of a superhydrophobic surface on the aluminum alloy sheets. Different hierarchical structures(Ag, Co, Ni and Zn) were formed on the aluminum surface by the galvanic replacement reactions. After the chemical modification of them with fluorination, the wettability of the surfaces was changed from superhydrophilicity to superhydrophobicity. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and water contact angle measurement were performed to characterize the morphological characteristic, chemical composition and superhydrophobicity of the surfaces. The as-prepared superhydrophobic surfaces showed a water contact angle as high as ca.160° and sliding angle as low as ca.3°. We hope the method to produce superhydrophobic surface can be used in many fields.  相似文献   

13.
Locust is a common flying insect. Locust wings were used as biomimetic templates to fabricate multi-functional polymer(polydimethylsiloxane, PDMS) films by soft lithography. The microstructure and wettability of the natural and artificial locust wing surfaces were investigated by means of a scanning electron microscope(SEM) and a video-based contact angle meter. The natural locust wing surface exhibits complicated hierarchical structures and high adhesive superhydrophobicity(contact angle 152°). The prepared polymer film faithfully reproduces the surface microstructures of the bio-template, and displays a good hydrophobicity and high adhesion(contact angle 144°). The complex wettability of the natural and artificial locust wing surfaces ascribes to the cooperative effect of hydrophobic composition and multi-dimensional rough microstructures. This work not only promotes our understanding of the wetting mechanism on bio-surfaces, but offers an inexpensive and effective approach for biomimetic fabrication of multi-functional interfacial materials.  相似文献   

14.
近年来,偶氮苯类化合物的光学顺反异构现象已引起人们的广泛关注[1~7].在紫外光照射下,偶氮苯由反式结构转变为顺式结构,引起分子的偶极矩发生变化,导致分子的吸收光谱、尺寸及表面能等均发生变化[7].偶氮苯表面能的改变可引起其表面浸润性发生变化.据文献[1~4]报道,偶氮苯膜在紫外光照射前后接触角最大改变了11°.浸润性是固体表面的一个重要特性,主要受固体表面的化学组成和微观几何结构(粗糙度)影响[8~11].通常,与水的接触角大于150°的表面称为超疏水表面;而与水的接触角小于5°的表面称为超亲水表面.本文以2-(4-偶氮苯基苯氧基)丙烯酸…  相似文献   

15.
制备了一种新型的耐酸碱性的水相超疏油铜表面. 在水相中,油滴在其表面上的接触角高达162°,同时极易滚动,表明所得到的表面不但具有水相超疏油特性,同时还表现出较低的黏附性及较强的耐酸碱能力. 在不同pH值(2~12)的水溶液中,这种低黏附超疏油特性依然存在. 研究表明,该表面的水下超疏油及低黏附特性主要源于表面亲水性的化学组成及独特的微纳米等级结构之间的协同作用. 而较强的耐酸碱性则得益于铜材料自身较好的化学稳定性.  相似文献   

16.
Azobenzene-containing monolayer with photoswitchable wettability   总被引:1,自引:0,他引:1  
A compact monolayer containing azobenzene has been prepared on silicon substrates. The elaboration route consisted of covalent grafting of freshly synthesized azobenzene moieties onto an isocyanate-functionalized self-assembled monolayer (SAM). The highly packed and ordered isocyanate-functionalized SAM and the azobenzene-functionalized SAM were monitored and characterized by contact angle measurements and X-ray reflectivity (XR). Photoswitching of the wettability of the film induced by the reversible cis-trans isomerization of the azobenzene chromophores is experimentally shown from water and olive oil contact angle measurements.  相似文献   

17.
微米/纳米结构对氟硅烷修饰氧化铝表面疏水性能的影响   总被引:3,自引:1,他引:2  
以多孔氧化铝膜为基板,用NaOH溶液进行化学腐蚀,控制适当的条件,得到氧化铝微米/纳米表面结构.用氟硅烷分别修饰光滑氧化铝膜、多孔氧化铝膜及其微米/纳米结构表面,进行接触角测试、XPS成分分析和SEM结构表征.结果表明,氟硅烷修饰的微米/纳米结构表面对水的接触角(149°±2°)比光滑表面(101°±1°)和纳米孔洞结构表面(141°±2°)都高.  相似文献   

18.
Different measurements were conducted to study the mechanisms of enhanced oil recovery (EOR) by surfactant-induced wettability alteration. The adhesion work could be reduced by the surfactant-induced wettability alteration from oil-wet conditions to water-wet conditions. Surfactant-induced wettability alteration has a great effect on the relative permeabilities of oil and water. The relative permeability of the oil phase increases with the increase of the water-wetness of the solid surface. Seepage laws of oil and water are greatly affected by surfactant-induced wettability alteration. Water flows forward along the pore wall in the water-wet rocks and moves forward along the center of the pores in the oil-wet rocks during the surfactant flooding. For the intermediate-wet system, water uniformly moves forward and the contact angle between the oil–water interface and the pore surface is close to 90°. The direction of capillary force is consistent with the direction of water flooding for the water-wet surface. While for the oil-wet surface, the capillary force direction is opposite to the water-flooding direction. The highest oil recovery by water flooding is obtained at close to neutral wetting conditions and the minimal oil recovery occurs under oil-wet conditions.  相似文献   

19.
利用含氟疏水基团的梯度分布,结合草莓形纳米SiO2粒子提供的双重粗糙表面,制备了具有类"荷叶效应"的超疏水涂膜,水接触角达(174.2±2)°,滞后角几乎接近0°.通过原子力显微镜、扫描电镜和水接触角的测试对膜表面形貌及疏水性能进行了表征;探讨了其表面微观结构与表面疏水性能的关系.草莓形复合粒子在膜表面的无规则排列赋予涂膜表面不同等级的粗糙度,使水滴与涂膜表面接触时能够形成高的空气捕捉率,这种微观结构与疏水基团的梯度分布相结合,赋予了含氟硅丙烯酸酯乳液涂膜表面超疏水性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号