首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
通过简单的溶剂热法以及其后续热处理过程,制备了NiO纳米花和NiO/还原氧化石墨烯(rGO)复合物。在NiO/rGO复合物中,rGO作为基底生长NiO,与此同时,NiO则有效的避免了rGO的团聚。采用热重分析(TG)、场发射扫描电子显微镜(FE-SEM)和X射线衍射对样品的成分、形貌和结构进行了表征。NiO/rGO复合物(NiO和rGO的质量比为82.7∶17.3)电极呈现优异的电化学性能。在1 A/g时,初始比电容为514.9 F/g,当材料完全活化后,其比电容高达600 F/g。同时,在电流密度为10 A/g时,相比于1 A/g时的比电容保持率为83.5%。此外,该电极材料具有非常优异的循环稳定性,6000次循环后电容衰减率为7.4%。表明所制备的复合物是一种有应用价值的超级电容器电极材料。  相似文献   

2.
通过简单的溶剂热法以及其后续热处理过程,制备了NiO纳米花和NiO/还原氧化石墨烯(rGO)复合物。 在NiO/rGO复合物中,rGO作为基底生长NiO,与此同时,NiO则有效的避免了rGO的团聚。 采用热重分析(TG)、场发射扫描电子显微镜(FE-SEM)和X射线衍射对样品的成分、形貌和结构进行了表征。 NiO/rGO复合物(NiO和rGO的质量比为82.7∶17.3)电极呈现优异的电化学性能。 在1 A/g时,初始比电容为514.9 F/g,当材料完全活化后,其比电容高达600 F/g。 同时,在电流密度为10 A/g时,相比于1 A/g时的比电容保持率为83.5%。 此外,该电极材料具有非常优异的循环稳定性,6000次循环后电容衰减率为7.4%。 表明所制备的复合物是一种有应用价值的超级电容器电极材料。  相似文献   

3.
以水-乙二醇为溶剂,以聚乙烯吡咯烷酮(PVP)为表面活性剂,采用溶剂热法合成了NiO纳米片,NiO纳米薄片通过自组装形成花状结构。 改变反应温度和溶剂,制备了NiO纳米立方体颗粒和NiO纳米球形颗粒。 用合成的NiO纳米材料制备工作电极,在6 mol/L的KOH溶液中利用三电极体系进行了电化学性能测试。 在电化学性能测试中进行了循环伏安测试、恒电流充放电测试和电化学阻抗谱(EIS)测试。 结果表明,NiO纳米片的比电容最高(在电流密度为0.5 A/g时比电容值为402 F/g),倍率性能最佳(0.5 A/g增加至4 A/g时有80.1%的电容保持率)。 在电流密度为4 A/g时对NiO纳米片进行1000次恒流充放电循环测试,比电容损失了9.7%。  相似文献   

4.
采用两步水热法和高温退火法成功制备了三维氧化镍/钼酸钴(NiO/CoMoO_4)复合电极材料。利用XRD、扫描电镜、透射电镜和电化学方法分别对其结构、表面形貌和电化学性能进行了表征和研究。结果表明,NiO/CoMoO_4呈独特的纳米线/片状结构而不同于NiO的针状形貌,其结构为活性物质提供了更大的活性位点。在电流密度为0. 3A/g时,复合物的比电容高达2253F/g,远远高于同电流密度下纯NiO电极材料的比电容,循环2000圈后,电容的保持率为92%,NiO和CoMoO_4的协同效应增强了其超级电容特性。  相似文献   

5.
陈野  舒畅  张春霞  葛鑫  张密林 《应用化学》2007,24(8):873-877
采用直接沉淀法制备了β-Ni(OH)2前驱体,经热处理后得到样品粉末。采用XRD、SEM和BET测试技术对样品进行了物性表征。结果表明,样品为立方相的NiO。用循环伏安、恒流充放电和交流阻抗研究了其超级电容性能。结果表明,所制备的NiO具有典型的法拉第赝电容特性。当pH值为11~12,沉淀温度为30℃条件下制备出Ni(OH)2前驱体,经300℃热处理3h后得到的NiO的比容量最大。当充放电电流密度为3×10-3A/cm2时,电极材料的比容量达到346F/g,电极电化学反应的电极电阻和液接电阻分别为0.24和0.085Ω,且具有良好的循环寿命。5×10-3A/cm2循环100次后,比电容为291.5F/g,充放电效率为93.5%。  相似文献   

6.
用电化学方法制备了一种多孔不锈钢基二氧化锰薄膜电极。 在不锈钢基体上以聚乙二醇辛基苯基醚(Triton X-100)在水溶液中形成的液晶作掩膜,通过电化学腐蚀制备了多孔基体电极,用恒电位方法在基体上沉积二氧化锰薄膜。 用扫描电子显微镜对二氧化锰薄膜电极形貌进行了考察,循环伏安法和充放电曲线法测试了二氧化锰薄膜电极的电容。 结果表明,腐蚀后的不锈钢基体呈现多孔特征,孔分布无规律,孔径大小从几十纳米到几百纳米不等,沉积的二氧化锰呈颗粒状,直径为80~90 nm。 扫描速率为20 mV/s,沉积电量0.4 C/cm2时,循环伏安法测得的二氧化锰薄膜电极的质量比电容达400 F/g;沉积电量4~5 C/cm2时,面积比电容达到320 ×10-3 F/cm2,此时的质量比电容仍保持在200 F/g左右。 实验结果表明,多孔不锈钢基二氧化锰薄膜电极在超级电容器领域有潜在的应用前景。  相似文献   

7.
通过简单的共沉淀反应和热处理过程在还原氧化石墨烯(rGO)表面生长鳞状锰酸钴(CoMn_2O_4)纳米片,得到了CoMn_2O_4/rGO复合材料.通过场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、X射线衍射(XRD)以及X射线光电子能谱(XPS)对样品的结构和组成进行了表征.电化学性能测试结果表明,CoMn_2O_4/rGO具有较好的储能性能和优良的循环稳定性.当电流密度为2 A/g时,CoMn_2O_4/rGO的比电容可达1000.8 F/g.经过1000周充放电循环后比电容保持率为93.6%.  相似文献   

8.
多孔碳材料由于高的比表面积、优异的电子传导率、良好的化学稳定性等优点在超级电容器电极材料领域被广泛研究。 碳材料的组成及表面孔结构直接影响其电化学性能,为进一步提高碳材料的电容性能,本文首次以聚多巴胺球为前体,KOH为活化剂,通过高温碳化成功制备了良好电化学性能的氮掺杂多孔碳材料。 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、 X射线粉末衍射(XRD)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)和Raman光谱等对所制备的氮掺杂多孔碳材料进行了形貌及结构组成的表征。 在6 mol/L KOH电解液中, 采用循环伏安、恒电流充放电对多孔碳材料的电化学性能进行了研究。 结果表明,由于双电层电容和赝电容的协同作用,在电流密度为1 A/g时,材料的比电容可达269 F/g,充放电循环1000圈后电容仍可保留初始值的93.5%。  相似文献   

9.
季铵盐掺杂聚苯胺电极的电容性能   总被引:3,自引:2,他引:1  
采用循环伏安法,在铂电极表面聚合制备了季铵盐[CnH2n+1N(CH3)3]Cl(n=12,14,16,18)掺杂的聚苯胺修饰电极。 利用扫描电子显微镜、红外光谱以及X射线衍射对复合电极的表面形貌和结构进行了表征。 用循环伏安法、交流阻抗和恒电流充放电测试对电极的电化学性质和电容行为进行了系统研究。 结果表明,其中[C18H37N(CH3)3]Cl季铵盐掺杂的聚苯胺复合电极比表面积大,电容性能好,在2×10-3 A的充电电流下,初始比电容高达329.6 F/g,未掺杂电极比电容为199.0 F/g。 而且,复合电极的循环稳定性良好,经30次循环后比电容保持为252.4 F/g。  相似文献   

10.
微波法负载具有简便、快速、均匀的优点. 本文尝试以乙二醇为还原剂, Ni(Ac)2为Ni源, 通过微波辐射负载及低温空气煅烧在CMK-3上形成NiO. 对样品进行X射线衍射(XRD)、透射电子显微镜(TEM)、N2吸脱附等结构表征及循环伏安(CV)等电化学性能测试. 结果显示, 微波法并经低温空气煅烧后有序介孔碳CMK-3的小角XRD峰强度变弱、比表面积下降、孔容减小, 但却使其比电容从229.3 F/g提高到295.9 F/g, 大于文献报导中介孔碳负载MnO2, RuO2xH2O后的比电容值. 由此说明微波法是有效的负载方法, 具有较好的应用前景.  相似文献   

11.
五甲川菁染料敏化p-NiO纳米结构电极的光电化学   总被引:4,自引:0,他引:4  
研究了NiO纳米结构电极及五甲川菁染料敏化NiO纳米结构电极的光电化学行为。结果表明,NiO纳米结构电极在光照下产生阴极光电流,为p-型半导体,其禁带宽度为2.8eV,使用五甲川菁染料敏化可以显著地提高NiO纳米结构电极的阴极光电流,使NiO纳米结构电极吸收波长红移至可见光区,光电转换效率得到明显改善。研究了OTE/TiO~2/Ru(bpy)~2(SCN)~2和OTE/NiO/PMC作为光阳极和光阴极组成电池的电池特性,结果表明复合电池的光电压提高,但光电流的大小受光电流小的电极限制。  相似文献   

12.
Nickel foam-supported porous NiO film was prepared by a chemical bath deposition technique, and the NiO/polyaniline (PANI) film was obtained by depositing the PANI layer on the surface of the NiO film. The NiO film was constructed by NiO nanoflakes, and after the deposition of PANI, these nanoflakes were coated by PANI. As an anode for lithium ion batteries, the NiO/PANI film exhibits weaker polarization as compared to the NiO film. The specific capacity after 50 cycles for NiO/PANI film is 520 mAh g−1 at 1 C, higher than that of NiO film (440 mAh g−1). The improvement of these properties is attributed to the enhanced electrical conduction and film stability of the electrode with PANI.  相似文献   

13.
We report the preparation of a nickel-foam-supported graphene sheet/porous NiO hybrid film by the combination of electrophoretic deposition and chemical-bath deposition. The obtained graphene-sheet film of about 19 layers was used as the nanoscale substrate for the formation of a highly porous NiO film made up of interconnected NiO flakes with a thickness of 10-20 nm. The graphene sheet/porous NiO hybrid film exhibits excellent pseudocapacitive behavior with pseudocapacitances of 400 and 324 F g(-1) at 2 and 40 A g(-1), respectively, which is higher than those of the porous NiO film (279 and 188 F g(-1) at 2 and 40 A g(-1)). The enhancement of the pseudocapacitive properties is due to reinforcement of the electrochemical activity of the graphene-sheet film.  相似文献   

14.
A novel CdSe/NiO heteroarchitecture was designed, prepared, and used as a photocathode for hydrogen generation from water. The composite films were structurally, optically, and photoelectrochemically characterized. The deposition of CdSe on the NiO film enhanced light harvesting in the visible‐light region and photoelectrochemical properties. Moreover, the CdSe/NiO photoelectrode showed superior stability both in nitrogen‐saturated and air‐saturated neutral environments. The CdSe/NiO photoelectrode after MoS2 modification retained the stability of the CdSe/NiO electrode and exhibited higher photocatalytic and photoelectrochemical performances than the unmodified CdSe/NiO electrode. In pH 6 buffer solution, an average hydrogen‐evolution rate of 0.52 μmol h?1 cm?2 at ?0.131 V (versus reversible hydrogen electrode, RHE) was achieved on a MoS2/CdSe/NiO photocathode, with almost 100 % faradaic efficiency.  相似文献   

15.
Nickel oxide nanoparticle (NiO?NP) and polypyrrole (PPy) composite were deposited on a Pt electrode for fabrication of a urea biosensor. To develop the sensor, a thin film of PPy?NiO composite was deposited on a Pt substrate that serves as a matrix for the immobilization of enzyme. Urease was immobilized on the surface of Pt/PPy?NiO by a physical adsorption. The response of the fabricated electrode (Pt/PPy?NiO/Urs) towards urea was analyzed by chronoamperometry and cyclic voltammetry (CV) techniques. Electrochemical response of the bio‐electrode was significantly enhanced. This is due to electron transfer between Ni2+ and Ni3+ as the electro‐catalytic group and the reaction between polypyrrole and the urease‐liberated ammonium. The fabricated electrode showed reliable and demonstrated perfectly linear response (0.7–26.7 mM of urea concentration, R2= 0.993), with high sensitivity (0.153 mA mM?1 cm?2), low detection of limit (1.6 μM), long stability (10 weeks), and low response time (~5 s). The developed biosensor was highly selective and obtained data were repeatable and reproduced using PPy‐NiO composite loaded with immobilized urease as urea biosensors.  相似文献   

16.
脉冲激光沉积纳米NiO薄膜   总被引:3,自引:0,他引:3  
Na Cl型 Ni O是一种 p型半导体 ,广泛用于传感器、催化剂、涂料、磁性材料及电极材料等领域[1~ 5] .最近 ,Poizot等 [6] 又报道了 Ni O可作为锂离子电池的阳极材料 ,使 Ni O成为又一新的研究热点 .纳米 Ni O粉末的制备方法有多种 ,主要包括化学沉淀法和沉淀转换法 ,Ni O薄膜的制备主要采用磁控溅射、化学气相沉积和电沉积等方法 [7~ 12 ] .脉冲激光沉积法具有操作简单和成膜纯净等优点 ,因此是制备薄膜的重要方法之一 .本文采用脉冲激光沉积 (PLD)法在氧气氛中使用金属镍作为靶材料 ,不锈钢作为基片 ,对 Ni O薄膜的制备进行了研究…  相似文献   

17.
Porous NiO nanowall arrays (NWAs) grown on flexible Fe-Co-Ni alloy have been successfully synthesized by using nullaginite (Ni2(OH)2CO3) as precursor and investigated as supercapacitor electrodes. In details, we adopted a simple hydrothermal method to realize Ni2(OH)2CO3 NWAs and examined their robust mechanical adhesion to substrate via a long-time ultrasonication test. Porous NiO NWAs were then obtained by a post-calcination towards precursors at 500 °C in nitrogen atmosphere. Electrochemical properties of as-synthesized NiO NWAs were evaluated by cyclic voltammetry and galvanostatic charge/discharge; porous NiO NWAs electrode delivered a specific capacitance of 270 F/g (0.67 A/g); even at high current densities, the electrode could still deliver a high capacitance up to 236 F/g (13.35 A/g). Meanwhile, it exhibited excellent cycle lifetime with ∼93% specific capacitance kept after 4000 cycles. These results suggest that as-made porous NiO NWAs electrode is a promising candidate for future thin-film supercapacitors and other microelectronic systems.  相似文献   

18.
以泡沫镍(NF)为集流体,在优化好的电位、时间和浓度下,将还原氧化石墨烯(rGO)、金属氧化物(Co_3O_4和NiO)直接生长在泡沫镍上,制备了NF/rGO/Co_3O_4和NF/rGO/Co_3O_4/NiO电极.运用三电极体系对电极材料进行了恒流充放电(GCD)和交流阻抗(EIS)等测试.结果表明,复合材料NF/rGO/Co_3O_4/NiO具有较高的比容量(电流密度为2 A/g时,比容量达到1188.6 F/g)和较好的循环稳定性(2000周充放电后,稳定性达到80.5%).该材料还具有较高的倍率性能,当电流密度由2 A/g增至12 A/g时,倍率性能仍能达到75.7%.  相似文献   

19.
This study presents a new electrochemical sensor (NiO−ERGO/SPE) for sensitive and selective detection of epinephrine (EPI) on the screen-printed electrode (SPE) which is modified with a nanocomposite film consisting of electrochemically reduced graphene oxide and NiO nanoparticles. After surface functionalization, structural and electrochemical characterization of NiO−ERGO film, DPV signals of NiO−ERGO/SPE towards the oxidation of EPI exhibited a linear correlation in the concentration range of 0.025 μM to 175 μM with a detection limit of 0.015 μM, which reveals NiO−ERGO film is manifested a good electrocatalytic activity for EPI detection compared with the previous reports. The selectivity of NiO−ERGO film was also tested on a very wide scale of possible interferents (ascorbic acid, uric acid, dopamine, lactic acid, phenylalanine, tyrosine, tryptophan, Li+, Na+, K+, Ca2+, and Zn2+). Moreover, to evaluate the applicability of the proposed sensor for real sample analysis, NiO−ERGO/SPE was successfully utilized for the determination of EPI in pharmaceutical samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号