首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With MnSO4, NaOH and K2S2O8 as the raw materials, the amorphous and δ-type manganese dioxide (MnO2) is separately prepared by using different chemical precipitation-oxidation methods. The results of charge–discharge and electrochemical impedance spectroscopy (EIS) tests show that (i) the specific capacitance of the amorphous MnO2 reaches to 301.2 F g−1 at a current density of 200 mA g−1 and its capacitance retention rate after 2000 cycles is 97%, which is obviously higher than 250.8 F g−1 and 71% of the δ-type one, respectively; (ii) good electrochemical capacitance properties of the amorphous MnO2 should be contributed to easy insertion/extraction of ions within the material; (iii) when 5 wt% Bi2O3 is coated on the amorphous MnO2, its specific capacitance increases to 352.8 F g−1 and the capacitance retention rate is 90% after 2000 cycles.  相似文献   

2.
We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035 F g?1 (91.7 mF cm?2). Paper‐based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3 Wh kg?1 and a power density of 81 kW kg?1. The device could maintain a 98.9 % capacitance retention over 10 000 cycles at 4 A g?1. The MnO2 ink could be a versatile candidate for large‐scale production of flexible and printable electronic devices for energy storage and conversion.  相似文献   

3.
Nitrogen‐doped porous carbon nanotubes@MnO2 (N‐CNTs@MnO2) nanocomposites are prepared through the in situ growth of MnO2 nanosheets on N‐CNTs derived from polypyrrole nanotubes (PNTs). Benefiting from the synergistic effects between N‐CNTs (high conductivity and N doping level) and MnO2 nanosheets (high theoretical capacity), the as‐prepared N‐CNTs@MnO2‐800 nanocomposites show a specific capacitance of 219 F g?1 at a current density of 1.0 A g?1, which is higher than that of pure MnO2 nanosheets (128 F g?1) and PNTs (42 F g?1) in 0.5 m Na2SO4 solution. Meanwhile, the capacitance retention of 86.8 % (after 1000 cycles at 10 A g?1) indicates an excellent electrochemical performance of N‐CNTs@MnO2 prepared in this work.  相似文献   

4.
Mesoporous manganese oxides (MnO2) were synthesized via a facile chemical deposition strategy. Three kinds of basic precipitants including sodium carbonate (Na2CO3), sodium bicarbonate (NaHCO3), and sodium hydroxide (NaOH) were employed to adjust the microstructures and surface morphologies of MnO2 materials. The obtained MnO2 materials display different microstructures. Great differences are observed in their specific surface area and porosity properties. The microstructures and surface morphologies characteristics of MnO2 materials largely determine their pseudocapacitive behavior for supercapacitors. The MnO2 prepared with Na2CO3 precipitant exhibits the optimal microstructures and surface morphologies compared with the other two samples, contributing to their best electrochemical performances for supercapacitors when conducted either in the single electrode tests or in the capacitor measurements. The optimal MnO2 electrode exhibits a high specific capacitance (173 F g–1 at 0.25 A g?1), high-rate capability (123 F g?1 at 4 A g?1), and excellent cyclic stability (no capacitance loss after 5,000 cycles at 1 A g?1). The optimal activated carbon//MnO2 hybrid capacitor exhibits a wide working voltage (1.8 V), high-power and high-energy densities (1,734 W kg?1 and 20.9 Wh kg?1), and excellent cycling behavior (93.8 % capacitance retention after 10,000 cycles at 1 A g?1), indicating the promising applications of the easily fabricated mesoporous MnO2 for supercapacitors.  相似文献   

5.
A hierarchical hollow hybrid composite, namely, MnO2 nanosheets grown on nitrogen‐doped hollow carbon shells (NHCSs@MnO2), was synthesized by a facile in situ growth process followed by calcination. The composite has a high surface area (251 m2g?1) and mesopores (4.5 nm in diameter), which can efficiently facilitate transport during electrochemical cycling. Owing to the synergistic effect of NHCSs and MnO2, the composite shows a high specific capacitance of 306 F g?1, good rate capability, and an excellent cycling stability of 95.2 % after 5000 cycles at a high current density of 8 A g?1. More importantly, an asymmetric supercapacitor (ASC) assembled by using NHCSs@MnO2 and activated carbon as the positive and negative electrodes exhibits high specific capacitance (105.5 F g?1 at 0.5 A g?1 and 78.5 F g?1 at 10 A g?1) with excellent rate capability, achieves a maximum energy density of 43.9 Wh kg?1 at a power density of 408 W kg?1, and has high stability, whereby the ASC retains 81.4 % of its initial capacitance at a current density of 5 A g?1 after 4000 cycles. Therefore, the NHCSs@MnO2 electrode material is a promising candidate for future energy‐storage systems.  相似文献   

6.
通过化学浴沉积和水热法在泡沫镍上制备了NiO/MnO_2分级纳米片阵列复合材料,XRD和SEM测试表明NiO纳米片垂直生长在泡沫镍上,交叉形成网状阵列结构;MnO_2纳米介孔泡沫进一步生长在NiO纳米片两侧,与NiO形成了壳核式的复合结构。循环伏安和恒流充放电测试发现,NiO/MnO_2分级纳米片阵列复合材料的电化学性能相比复合前得到明显改善,在1 A·g~(-1)的电流密度下,比电容提高至1 297 F·g~(-1);2 A·g~(-1)下循环1 000次,比电容保持率高达97%,比电容和循环性能的改善是由于分级纳米片阵列复合结构方便了电解液传质,扩大了活性材料与电解液的接触,促进了赝电容反应,提高了NiO和MnO_2的结构稳定性。  相似文献   

7.
通过化学浴沉积和水热法在泡沫镍上制备了NiO/MnO2分级纳米片阵列复合材料,XRD和SEM测试表明NiO纳米片垂直生长在泡沫镍上,交叉形成网状阵列结构;MnO2纳米介孔泡沫进一步生长在NiO纳米片两侧,与NiO形成了壳核式的复合结构。循环伏安和恒流充放电测试发现,NiO/MnO2分级纳米片阵列复合材料的电化学性能相比复合前得到明显改善,在1 A·g-1的电流密度下,比电容提高至1 297 F·g-1;2 A·g-1下循环1 000次,比电容保持率高达97%,比电容和循环性能的改善是由于分级纳米片阵列复合结构方便了电解液传质,扩大了活性材料与电解液的接触,促进了赝电容反应,提高了NiO和MnO2的结构稳定性。  相似文献   

8.
NiCo2S4 microspheres consisting of nanoparticles were synthesized by a simple hydrothermal process, and then NiCo2S4@CeO2 microspheres consisting of nanosheets or nanoneedles-like structures were constructed by a morphology reshaping process for the first time. The introduction of CeO2 changes the nanoparticle morphology of NiCo2S4, and forms incompact nanosheet and nanoneedle structures. The porous, incompact nanosheet or nanoneedle structures with enhanced specific surface areas not only accelerate the charge transfer but also facilitate the electrolyte diffusion and provide more active sites for the redox reactions. These merits endow outstanding electrochemical performances to NiCo2S4@CeO2 microspheres when used as electrode materials for electrochemical pseudocapacitor. Especially, NiCo2S4@CeO2 (6 wt%) microspheres consisted of nanosheets show a high specific capacitance of 1263.6 F g?1 with a retention rate of 81.1% at 20 A g?1 after 10,000 cycles. Nonetheless, pristine NiCo2S4 microspheres consisted of nanoparticles only show a high specific capacitance of 555.2 F g?1 with a retention rate of 63.5% at the same conditions. The first-principles calculation shows that the strong interactions between the NiCo2S4 and CeO2 are favorable for the stabilization of the composite, being responsible for its good cycling performance. The result shows that the NiCo2S4@CeO2 microspheres are promising electrode materials for high-performance pseudocapacitor, and morphology reshaping and CeO2 modification are efficient ways to construct high-performance pseudocapacitor.  相似文献   

9.
以尿素、四水合氯化锰和氧化石墨烯为原料,采用水热法并通过热分解制备了一种具有石墨烯包覆结构的石墨烯-二氧化锰复合材料,利用扫描电子显微镜、X射线衍射、比表面积(BET)、拉曼光谱和热失重等技术对其形貌、晶体结构及表面结构进行了表征;在三电极条件下利用循环伏安法、恒流充放电法和交流阻抗法测试了材料的电化学性能,并考察了不同石墨烯含量对材料比电容的影响. 结果表明,在不添加模板剂的条件下制备的复合材料中二氧化锰是具有介孔结构的α-MnO2,当复合15%(质量分数)的石墨烯后材料的比表面积从109 m2·g-1提高到168 m2·g-1. 复合材料具有更好的电化学性能,在0.2 A·g-1电流密度下复合材料的比电容达到最大值(454 F·g-1),远高于纯二氧化锰的值(294 F·g-1). 在2 A·g-1的电流密度下恒流充放电2000 次后复合材料的比电容保持率为92%.  相似文献   

10.
通过水热-煅烧两步法制备了系列镍钴氧化物(NCO)纳米片。通过改变前驱体溶液中的镍、钴离子物质的量之比,进而调控NCO纳米片中的过渡金属离子比例。NCO纳米片的晶相、形貌和结构利用X射线衍射、扫描电子显微镜和X射线光电子能谱表征。此外,对NCO纳米片的电化学性能进行测试。结果表明,NCO-2(Ni1.95Co1Ox)纳米片在0.5 A·g-1电流密度下,比电容为1 096.88 F·g-1,且经过5 000次循环后具有78.26%的循环稳定性。以NCO-2为正极、活性碳为负极构成的非对称超级电容器,在功率密度为576 W·kg-1时,能量密度为57.70 Wh·kg-1。  相似文献   

11.
通过水热-煅烧两步法制备了系列镍钴氧化物(NCO)纳米片。通过改变前驱体溶液中的镍、钴离子物质的量之比,进而调控NCO纳米片中的过渡金属离子比例。NCO纳米片的晶相、形貌和结构利用X射线衍射、扫描电子显微镜和X射线光电子能谱表征。此外,对NCO纳米片的电化学性能进行测试。结果表明,NCO-2(Ni1.95Co1Ox)纳米片在0.5 A·g-1电流密度下,比电容为1 096.88 F·g-1,且经过5 000次循环后具有78.26%的循环稳定性。以NCO-2为正极、活性碳为负极构成的非对称超级电容器,在功率密度为576 W·kg-1时,能量密度为57.70 Wh·kg-1。  相似文献   

12.
《Solid State Sciences》2012,14(6):677-681
The polyaniline/TiO2/graphene oxide (PANI/TiO2/GO) composite, as a novel supercapacitor material, is synthesized by in situ hydrolyzation of tetrabutyl titanate and polymerization of aniline monomer in the presence of graphene oxide. The morphology, composition and structure of the composites as-obtained are characterized by SEM, TEM, XRD and TGA. The electrochemical property and impedance of the composites are studied by cyclic voltammetry and Nyquist plot, respectively. The results show that the introduction of the GO and TiO2 enhanced the electrode conductivity and stability, and then improved the supercapacitive behavior of PANI/TiO2/GO composite. Significantly, the electrochemical measurement results show that the PANI/TiO2/GO composite has a high specific capacitance (1020 F g−1 at 2 mV s−1, 430 F g−1 at 1 A g−1) and long cycle life (over 1000 times).  相似文献   

13.
For the first time, hierarchically porous carbon materials with a sandwich‐like structure are synthesized through a facile and efficient tri‐template approach. The hierarchically porous microstructures consist of abundant macropores and numerous micropores embedded into the crosslinked mesoporous walls. As a result, the obtained carbon material with a unique sandwich‐like structure has a relatively high specific surface (1235 m2 g?1), large pore volume (1.30 cm3 g?1), and appropriate pore size distribution. These merits lead to a comparably high specific capacitance of 274.8 F g?1 at 0.2 A g?1 and satisfying rate performance (87.7 % retention from 1 to 20 A g?1). More importantly, the symmetric supercapacitor with two identical as‐prepared carbon samples shows a superior energy density of 18.47 Wh kg?1 at a power density of 179.9 W kg?1. The asymmetric supercapacitor based on as‐obtained carbon sample and its composite with manganese dioxide (MnO2) can reach up to an energy density of 25.93 Wh kg?1 at a power density of 199.9 W kg?1. Therefore, these unique carbon material open a promising prospect for future development and utilization in the field of energy storage.  相似文献   

14.
Lithium–sulfur batteries have been investigated as promising electrochemical‐energy storage systems owing to their high theoretical energy density. Sulfur‐based cathodes must not only be highly conductive to enhance the utilization of sulfur, but also effectively confine polysulfides to mitigate their dissolution. A new physical and chemical entrapment strategy is based on a highly efficient sulfur host, namely hollow carbon nanofibers (HCFs) filled with MnO2 nanosheets. Benefiting from both the HCFs and birnessite‐type MnO2 nanosheets, the MnO2@HCF hybrid host not only facilitates electron and ion transfer during the redox reactions, but also efficiently prevents polysulfide dissolution. With a high sulfur content of 71 wt % in the composite and an areal sulfur mass loading of 3.5 mg cm?2 in the electrode, the MnO2@HCF/S electrode delivered a specific capacity of 1161 mAh g?1 (4.1 mAh cm?2) at 0.05 C and maintained a stable cycling performance at 0.5 C over 300 cycles.  相似文献   

15.
Graphene and graphene oxide nanocomposites are promising and fascinating types of nanocomposites because of their fast kinetics, unique affinity for heavy metals, and greater specific area. Initially, in this study, a green, cost-effective and facile method was utilized to prepare G, GO, CdO, G-CdO, and CdO-GO nanocomposites by Azadirachta indica and then analyzed using UV–vis spectroscopy, Fourier-transform spectroscopy, Raman, X-ray diffraction and scanning electron microscope. The synthesized nanocomposites were explored for chromium elimination from wastewater collected from a petroleum refinery. CdO-GO, G-CdO nanocomposites showed remarkable adsorption capability of 699 and 430 mg g?1 which was higher than G (80 mg g?1), GO (65 mg g?1), and CdO (400 mg g?1). Based on the R2 (correlation coefficient) values, the kinetic statistics of Cr (VI) onto the G, GO, CdO, G-CdO, and CdO-GO were effectively obeyed by pseudo-second-order than by all other models. The R2 values for the five nano-bioadsorbents were extraordinarily high (R2 greater than 0.990) which ensured the chemisorption. This study ensured that the adsorptive removal rate of Cr (VI) is still greater than 85 % after repeated five cycles, suggesting that the produced nanomaterials are adsorbents with strong recyclability.  相似文献   

16.
Cu‐doped Ni‐based metal–organic frameworks (MOFs) nanomaterials fabricated through a one‐pot hydrothermal reaction were characterized, and their performance as supercapacitor electrode materials was further studied for the first time. The results indicated that the doping of foreign metals and the introduction of K3[Fe(CN)6] in the KOH electrolyte significantly improve the performance of the supercapacitor. The results indicated that the Ni2.6Cu0.4 MOFs material shows the highest specific capacitance (1282 F g?1 at 1 A g?1 in mixed 2 M KOH and 0.1 M K3[Fe(CN)6]) and optimal capacitance retention (85.7% after 2000 cycles). This work provides a feasible optimization strategy for the construction of MOFs‐based supercapacitor electrode materials with excellent performance, and also provides a reliable experimental and theoretical basis for practical industrial production.  相似文献   

17.
We report a novel strategy for the hierarchical assembly of Ag nanoparticles (NPs) on MoS2 nanosheets through coordination by using a multifunctional organic ligand. The presence of Ag NPs on the surface of MoS2 nanosheets inhibits their agglomeration, thereby providing increased interlayer spacing for easy Li+ ion intercalation. Such a unique hybrid architecture also ensures sufficient percolation pathways on the whole surface of the MoS2 nanosheets. Moreover, the high rigidity and low deformability of the Ag NPs effectively preserve the hybrid architecture during the charge–discharge process, which translates into a high cycle stability. A prominent synergistic effect between MoS2 and Ag is witnessed. When the Ag content is only 5 wt %, the Ag–MoS2 hybrid delivers a reversible capacity as high as 920 mA h g?1 at a current density of 100 mA g?1, making the Ag–MoS2 hybrid an attractive candidate for next‐generation LIBs.  相似文献   

18.
Graphene aerogels (GA), prepared with an organic sol–gel process, possessing a high specific surface area of 793 m2 g?1, a high pore volume of 3 cm3 g?1, and a large average pore size of 17 nm, were applied as a support for manganese oxide for supercapacitor applications. The manganese oxide was electrochemically deposited into the highly porous GA to form MnO2/GA composites. The composites, at a high manganese oxide loading of 61 wt. %, exhibited a high specific capacitance of 410 F g?1 at 2 mV s?1. More importantly, the high rate specific capacitances measured at 1000 mV s?1 for these composites were two‐fold higher than those obtained with samples prepared in the absence of the GA support. The specific capacitance retention ratio, based on the specific capacitance obtained at 25 mV s?1, was maintained high, at 85 %, even at the high scan rate of 1000 mV s?1, in contrast with the significantly lower value of 67 % for the plain manganese oxide sample. For the cycling stability, the specific capacitance of the composite electrode decayed by only 5 % after 50,000 cycles at 1000 mV s?1. The success of this MnO2/GA composite may be attributed to the structural advantages of high specific surface areas, high pore volumes, large pore sizes, and three‐dimensionally well‐connected network of the GA support. These structural advantages made possible the high mass loading of the active material, manganese oxide, large amounts of electroactive surfaces for the superficial redox events, fast mass‐transfer within the porous structure, and well‐connected conductive paths for the involved charge transport.  相似文献   

19.
通过控制水热反应温度以及氧化石墨烯(GO)与高锰酸钾的填料比, 合成了两组部分还原的GO-K2Mn4O8纳米复合材料. X射线衍射(XRD)分析说明水热过程中合成了α-MnO2和一种新的晶相K2Mn4O8.通过X射线光电子能谱(XPS)分析了水热反应前后氧化石墨的含氧官能团的变化. 扫描电子显微镜(SEM)显示样品由片状还原的氧化石墨烯构成, 其表面附有许多小的纳米颗粒, 这种结构有利于储能时电子的传递. 通过这两组复合材料的结构分析, 更好地理解了材料的电化学性能的变化. 利用循环伏安法和恒流充放电测试比较了材料的电容性能. 用1 mol·L-1的硫酸钠做电解液, 电位范围是0-1 V, 在1 A·g-1的电流密度下, 测得的样品最佳比电容达到251 F·g-1, 能量密度为32 Wh·kg-1, 功率密度为18.2 kW·kg-1. 并且在5 A·g-1的电流密度下循环1000次后样品的比电容仍维持在初始比电容的88%.  相似文献   

20.
Waste wood-dust of Dalbergia sisoo (Sisau) is presented, as a novel, low-cost, renewable, and sustainable source of agro-waste for the production of a highly porous activated carbon electrodes (Ds-electrodes) for supercapacitor. Ds-electrode was initially tested as supercapacitor electrode, which showed a lesser specific capacitance of 104.4 Fg?1. Therefore, hybrid-composite-electrodes (HCEs) were fabricated by adopting the nanostructured “manganese IV oxide (MnO2)-activated carbon (Ds) composite” in various ratios as the core electrode materials. The HCEs was prepared via a simple facile mechanical mixing method and polyvinylidine fluoride (PVDF) polymeric solution was used as the electrode material binder. The experimental results showed that the 1:1 Ds: MnO2 composite displayed highest specific capacitance of 300.2 Fg?1, capacity retention of 96.3 % after 1000 cycles, 16.3 WhKg?1 of specific energy density at power density of 148.2 WKg?1 and low equivalent series resistance (ESR) value of 0.41 Ω at equivalent (1:1, Ds:MnO2) loading of MnO2 to Ds. It is clear that the equivalent (1:1) concentration of MnO2 has improved the capacitive performance of the composite via pseudocapacitance charge storage mechanism as well as the enhancement on the specific surface area of the electrode. However, further increasing of the MnO2 content (1:2, Ds:MnO2) in the electrode was found to distort the capacitive performances and deteriorate the specific surface area of the electrode, mainly due to the aggregation of the MnO2 particles within the composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号