首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 649 毫秒
1.
In this study, cellulose acetate (CA) ultrafiltration (UF) membranes were prepared using the phase inversion method. Effects of CA and polyethylene glycol (PEG) concentrations in the casting solution and coagulation bath temperature (CBT) on morphology of the synthesized membranes were investigated. Based on L9 orthogonal array of Taguchi experimental design 18 membranes were synthesized (with two replications) and pure water permeation flux through them were measured. It was found out that increasing PEG concentration in the casting solution and CBT, accelerate diffusional exchange rate of solvent 1-methyl-2-pyrrolidone (NMP) and nonsolvent (water) and consequently facilitate formation of macrovoids in the membrane structure. Increasing CA concentration, however, slows down the demixing process. This prevents instantaneous growth of nucleuses in the membrane structure. Hence, a large number of small nucleuses are created and distributed throughout the polymer film and denser membranes are synthesized. Rate of water flux through the synthesized membranes is directly dependent on the size and number of macrovoids in the membrane structure. Thus, maximum value of flux is obtained at the highest levels of PEG concentration and CBT (10 wt.% and 23 °C, respectively) and the lowest level of CA concentration (13.5 wt.%). Analysis of variance (ANOVA) showed that all parameters have significant effects on the response. However, CBT is the less influential factor than CA and PEG concentrations on the response (flux).  相似文献   

2.
Different viscosity grade sodium alginate (NaAlg) membranes and modified sodium alginate membranes prepared by solution casting method and crosslinked with glutaraldehyde in methanol:water (75:25) mixture were used in pervaporation (PV) separation of water+acetic acid (HAc) and water+isopropanol mixtures at 30 °C for feed mixtures containing 10–50 mass% of water. Equilibrium swelling experiments were performed at 30 °C in order to study the stability of membrane in the fluid environment. Membranes prepared from low viscosity grade sodium alginate showed the highest separation selectivity of 15.7 for 10 mass% of water in the feed mixture, whereas membranes prepared with high viscosity grade sodium alginate exhibited a selectivity of 14.4 with a slightly higher flux than that observed for the low viscosity grade sodium alginate membrane. In an effort to increase the PV performance, low viscosity grade sodium alginate was modified by adding 10 mass% of polyethylene glycol (PEG) with varying amounts of poly(vinyl alcohol) (PVA) from 5 to 20 mass%. The modified membranes containing 10 mass% PEG and 5 mass% PVA showed an increase in selectivity up to 40.3 with almost no change in flux. By increasing the amount of PVA from 10 to 20 mass% and keeping 10 mass% of PEG, separation selectivity decreased systematically, but flux increased with increasing PVA content. The modified sodium alginate membrane with 5% PVA was further studied for the PV separation of water+isopropanol mixture for which highest selectivity of 3591 was observed. Temperature effect on pervaporation separation was studied for all the membranes; with increasing temperature, flux increased while selectivity decreased. Calculated Arrhenius parameters for permeation and diffusion processes varied depending upon the nature of the membrane.  相似文献   

3.
扩散致相转化法制备结晶性聚合物多孔膜   总被引:6,自引:0,他引:6  
介绍了扩散致相转化法制备结晶性聚合物多孔膜的研究现状。其三元等温成膜体系的相图包含液-液分相和固-液分相两种相分离方式,是理解成膜过程的重要工具,总结了成膜机理和膜的结构形貌:单纯S-L相分离生成粒子状对称膜结构;单纯L-L相分离生成蜂窝状非对称膜结构;两种相分离方式竞争发生将生成多样的混合膜结构。铸膜液浓度、非溶剂种类、铸膜溶剂组成、凝胶浴组成、制膜温度是影响膜结构形貌的主要因素。  相似文献   

4.
Asymmetric polysulfone membranes were prepared by wet phase inversion method with different demixing rate of casting solutions. The influent factor of demixing rate was focused on the polarity of additive in the polysulfone/N-methyl-2-pyrrolidone/water ternary system. With increasing the polarity of alcohols in the casting solution, the decrease in skin layer thickness was observed and then a poor separation performance of membranes can be obtained. It was found that the polar additive caused the rapidly demixing of casting solution in coagulation bath and formed porous asymmetric membranes with defective skin layer. In the other case, chloroform was used as the non-polar additive in casting solution. With increasing the mount of chloroform in the casting solution, the increase in skin layer thickness was observed and then lead to a good separation performance of these membranes. It was found that of the non-polar additive delays the demixing rate of casting solution in this ternary system. The separation performance of these asymmetric membranes were characterized by the measurement of dehydration of ethanol/water mixture by pervaporation and observed the morphology by scanning electron microscopy. It was found that the separation performance of asymmetric polysulfone membrane strongly depends on the polarity of adding solvent in polysulfone/N-methyl-2-pyrrolidone/water ternary system.  相似文献   

5.
Aliphatic polyamides (Nylon-66 and a Nylon-6, -66, -610 terpolymer) were isothermally precipitated from formic acid solution by immersing in an aqueous nonsolvent bath or a solvent/nonsolvent mixture. Depending on the composition of the polymer solution and nonsolvent bath, phase separation by nucleation and growth can be initiated for a liquid-liquid phase separation process, a crystallization process or a combined process. Under certain conditions, crystallization of Nylon-66 results in a membrane with a uniform skinless microporous structure that was rapidly wetted by water. In contrast, liquid-liquid phase separation produces a polyamide film with largely unconnected cellular voids that is as a result not wetted by water. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Flat membranes with controlled morphology, pore dimensions, mechanical properties and crystal structure were prepared by wet and dry wet phase inversion from polyvinylidene fluoride (PVDF). The effects of several parameters such as precipitation temperature, composition of the polymer solution (concentration, type of solvent), exposure time before immersion in the coagulation bath, type of coagulant on the sequence and the extent of the two phase separation processes, i.e. liquid-liquid and liquid-solid demixing (crystallization), were studied.Using solvent/nonsolvent pairs with different mutual affinity (DMA/water, DMA/C1-C8 alcohols), different morphologies were obtained. High casting solution temperature plays important role to increase the rate of the liquid-liquid demixing on the crystallization, i.e. the type of crystallites formed (α-type) also by using a soft coagulation bath. Exposure time before immersion favours the first type of phase separation and therefore once again crystallites of α type were observed. At room temperature, using C1-C8 alcohols as nonsolvents, the presence of crystallites of α type can be related to molar volume of the coagulant.  相似文献   

7.
An analysis of data from scanning electron microscopy (SEM), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC) for two series of polyurethane membranes is presented. Membranes were prepared by direct immersion of the casting solution of polyurethane, dissolved in dimethyl formamide at different temperatures, into either water or 1-octanol bath at 25 °C. Depending on the temperature of polyurethane dissolution, a gradual variety in the membrane structure was observed by SEM. As the temperature of polymer dissolution was increased, the membrane structure changed from dense to cellular or particulate morphologies. On the basis of the GPC and DSC results, polyurethane molecular weight decreased but the degree of microphase separation caused by clustering of some of the soft and hard segments into separate domains in the membrane increased with increasing the temperature of polymer dissolution. It is thus proposed that the change in membrane structure is due to the variation of molecular weight of polyurethane, which in turn can change polymer chain mobility during membrane formation. In addition, the extent of microphase separation was described and related to the particulate morphology when 1-octanol was used as the nonsolvent.  相似文献   

8.
Microporous poly(vinylidene fluoride) (PVDF) membranes with asymmetric pore structure were prepared by a wet phase inversion process. The polymer was precipitated from a casting solution when immersed in a cold water (gelation) bath. The casting solution was, in most cases, composed of polymer, solvent, and nonsolvent. In this solvent-nonsolvent system, the solvents used were triethylphosphate (TEP) and dimethylsulfoxide (DMSO), and the nonsolvents used were glycerol and ethanol. Mean pore sizes and effective porosity of the microporous membranes were calculated using the gas permeation method. They were studied as a function of evaporation time of wet nascent film, polymer molecular weight, concentration of polymer, and concentration of nonsolvent. The morphology of the membranes was examined by scanning electron microscopy (SEM).  相似文献   

9.
Using diethylene glycol (DegOH) as non‐solvent additive (NSA) and N, N‐dimethylacetamide (DMAc) as solvent (S), polyethersulfone (PES) flat sheet membranes were prepared via immersion precipitation combined with the vapor induced phase separation (VIPS) process. Light transmittance was used to follow the precipitation rate during the immersion process as well as during the VIPS stage. As the addition of the NSA, the viscosity of casting solutions increased, which led to a slow precipitation rate. Though the precipitation rate decreased, the instantaneous demixing type was maintained. High flux membranes were obtained only at a high mass ratio of NSA/S; producing membranes had cellular pores on the top surface and sponge‐like structure on cross section. The VIPS process prior to immersion precipitation was important for the formation of cellular pore on the surface. With the increase in exposure time, the liquid–liquid phase separation took place on the surface of casting solution; nucleation and growth induced the formation of cellular pore on the top surface. Coagulation bath temperature also had large effect on the precipitation rate; high temperature on coagulation bath mainly accelerated the transfer of solvent and non‐solvent. Higher flux membrane with a porous skin layer could be obtained at a high coagulation bath temperature, but at the same time the mechanism properties were weakened. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Using a solution technique, chitosan-based polyelectrolyte complexes (PECs) were developed as pervaporation membranes by incorporating phosphotungstic acid (PTA). The resulting membranes were characterized by Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Membranes were tested for their ability to separate water–isopropanol mixtures by pervaporation in the temperature range of 30–50 °C. The experimental results demonstrated that both flux and selectivity were increased simultaneously with increasing PTA content in the membrane. The permeation flux of pure chitosan membrane was increased dramatically from 4.13 to 11.70 × 10−2 kg/m2 h and correspondingly its separation factor was increased from 4490 to 11,241 and then decreased to 7490 at 30 °C for 10 mass% of water in the feed. The total flux and flux of water were found to be almost overlapping particularly for PECs membranes, suggesting that these could be used effectively to break the azeotropic point of water–isopropanol mixtures. From the temperature dependency of diffusion and permeation values, the Arrhenius activation parameters were estimated and discussed in the context of membranes efficiency. The pure chitosan and a small amount of PTA-incorporated PECs membranes exhibited positive heat of sorption while other PECs membranes exhibited negative heat of sorption, giving exothermic contribution.  相似文献   

11.
利用浸沉凝胶相转化法制备医用聚氨酯(BPU)/聚乳酸(PLLA)微孔膜,讨论了BPU/PLLA不同配比时聚合物/1,4-二氧六环/水三元体系的凝胶特性及其对共混膜结构和性能的影响,并初步探讨成膜机理.研究结果表明,随着BPU/PLLA质量比例由90/10变为75/25、50/50、25/75、10/90,聚合物/溶剂/非溶剂三元体系的热力学稳定性增强,凝胶值增大,但是共混溶液的黏度增大;并且,共混膜的孔隙率、膜厚、平均孔径、水蒸汽透过速率及吸水率先增加后降低.这主要是由于随着BPU/PLLA质量比例的变化,动力学扩散过程控制成膜速度转变为成膜体系热力学性质控制成膜速度;成膜过程由延时分相转变为瞬时分相,后又转变为延时分相.  相似文献   

12.
制膜条件对PVDF膜形态结构的影响   总被引:19,自引:0,他引:19  
对干湿相转换法制备聚偏氟乙烯微孔膜进行了研究。利用光透射仪研究了不同制膜条件下成膜分相速度及其变化规律,用气体渗透法测定了膜的平均孔径和有效孔隙率,并结合电镜照片对不同制膜条件下膜的结构和性能进行了表征。实验结果表明较低的铸膜液温度和凝胶浴温度、较短的蒸发时间和较低聚合物浓度有利于增加膜的有效孔隙率。在铸膜液中加入非溶剂是提高膜性能的一种手段,但非溶剂的加入量需足够大,以抵消铸膜液温度提高引起的相反的效应。  相似文献   

13.
The polymer/solvent/nonsolvent systems with different L-L demixing rates were prepared by employing a binary solvent mixture consisting of two solvents - one exhibits an instantaneous liquid-liquid (L-L) demixing process, while the other exhibits a delayed L-L demixing process. It was found that an increase in the delay time of L-L demixing results in a denser membrane structure, an increase in fiber mechanical strength, a delay desorption of moisture in membrane, and a decrease in gas permeance, for a hollow fiber fabrication system consisting of cellulose acetate (CA) (polymer), N-methyl-pyrrolidone (NMP) (solvent having an instantaneous L-L demixing property), tetrahydrofuran (THF) (solvent having a delayed L-L demixing property) and water (nonsolvent). Hollow fibers prepared under an instantaneous L-L demixing process tends to have more mechanically weak points (flaws) than those prepared under a delayed L-L demixing process. Surprisingly, SEM observation suggests that membranes wet-spun from solutions containing both THF and NMP tend to have a rough outer skin morphology. Inconsistent demixing and the collapse of the outer nascent skin may be the main causes. In addition, the effect of bore fluid chemistry on fiber performance is much more pronounced for systems having a delayed L-L demixing mechanism than that having an instantaneous L-L demixing.  相似文献   

14.
Dan-ying  Zuo  Bao-ku  Zhu  Jian-hua  Cao  徐又一 《高分子科学》2006,(3):281-289
Through the preparation of PVDF membranes using various nonsolvent coagulation baths following the phase inversion process, the influence of alcohol-based nonsolvents on the formation and structure of PVDF membranes were investigated. The light scattering and light transmission measurements were used to characterize the equilibrium phase diagram and the gelation speed, respectively. The locations of the crystallization-induced gelation boundaries for various systems and precipitation processes were explained from the corresponding thermodynamic and kinetic parameters. It was found that the better affinity between alcohol-based nonsolvents and DMAc solvent caused the gelation boundaries further away from the PVDF-DMAc axis with the coagulation bath varying from water, methanol, ethanol to iso-propanol. Due to the lower exchange rate of DMAc and alcohols, the delayed demixing took place for the membrane-forming using alcohols as baths, and the delayed time became longer when the coagulation bath was changed from methanol, ethanol to iso-propanol. The characterization results of membranes indicate that the influence of nonsolvents on the phase diagram and the precipitation process are in agreement with those on the membrane morphology. The better thermodynamic stability and a low exchange diffusion rate of PVDF/DMAc/alcohols favor the liquid-solid phase separation in gelation process, and therefore yield the membranes with a porous upper surface, a particular bottom surface and symmetrical structure.  相似文献   

15.
Homogeneous and composite chitosan based membranes were prepared by the solution casting technique. The membranes were investigated for the pervaporation dehydration of isopropanol-water systems. The effects of feed concentration and temperature on the separation performance of the membranes were studied. In terms of the pervaporation separation index (PSI), the composite membrane was more productive than the homogeneous membrane for pervaporation of feed with high isopropanol content. It was observed that permeation increased and the separation factor decreased with the temperature. Modification of the homogeneous chitosan membrane by chemical crosslinking with hexamethylene diisocyanate improved the permselectivity but reduced the permeation rate of the membrane.  相似文献   

16.
In general liquid–liquid demixing processes are responsible for the porous morphology of membranes obtained by immersion precipitation. For rapidly crystallizing polymers, solid–liquid demixing processes also generate porous morphologies. In this study, the interference of both phase transitions has been analyzed theoretically using the Flory–Huggins theory for ternary polymer solutions. It is demonstrated that four main thermodynamic and kinetic parameters are important for the structure formation in solution: the thermodynamic driving force for crystallization, the ratio of the molar volumes of the solvent and the nonsolvent, the polymer–solvent interaction parameter, and the rate of crystallization of the polymer compared to the rate of solvent-nonsolvent exchange. An analysis of the relevance of each of these parameters for the membrane morphology is presented. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 763–770, 1997  相似文献   

17.
For the first time the combination of solution casting and solvent–nonsolvent exchange (phase inversion) has been applied to generate asymmetric membranes with highly ordered hexagonally packed cylinders with perpendicular orientation composed of polystyrene-block-poly(ethylene oxide). The influence of parameters like solvent composition and evaporation time on the membrane formation is presented. The development is based on a study of the solution behavior by dynamic light scattering and the precipitation behavior of the cylinder forming diblock copolymer by turbidity measurements from different solvent and nonsolvent systems. The water flux properties, as an important membrane characteristic, show a time dependent behavior, due to swelling of the polyethylene oxide blocks. The morphologies of the membranes are imaged by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

18.
Novel organic–inorganic hybrid membranes were prepared through sol–gel reaction of poly(vinyl alcohol) (PVA) with γ-aminopropyl-triethoxysilane (APTEOS) for pervaporation (PV) separation of ethanol/water mixtures. The membranes were characterized by FTIR, EDX, WXRD and PALS. The amorphous region of the hybrid membranes increased with increasing APTEOS content, and both the free volume and the hydrophilicity of the hybrid membranes increased when APTEOS content was less than 5 wt%. The swelling degree of the hybrid membranes has been restrained in an aqueous solution owing to the formation of hydrogen and covalent bonds in the membrane matrix. Permeation flux increased remarkably with APTEOS content increasing, and water permselectivity increased at the same time, the trade-off between the permeation flux and water permselectivity of the hybrid membranes was broken. The sorption selectivity increased with increasing temperature, and decreased with increasing water content. In addition, the diffusion selectivity and diffusion coefficient of the permeants through the hybrid membranes were investigated. The hybrid membrane containing 5 wt% APTEOS has highest separation factor of 536.7 at 50 °C and permeation flux of 0.0355 kg m−2 h−1 in PV separation of 5 wt% water in the feed.  相似文献   

19.
To investigate the effect of poly(ethylene glycol) (PEG) 200 on membrane performance, asymmetric polyetherimide (PEI) membranes with a small pore size were prepared by dry/wet-phase inversion from the casting solution containing N-methyl-2-pyrrolidone as a solvent and poly(ethylene glycol) 200 as an additive. Our experiment revealed that the addition of PEG 200 has an influence on the casting solution properties, permeation properties, and resulting membrane structures. Moreover, a drying process also affects the formation of a dense skin layer. Increasing the amount of PEG 200 drastically improved the solute rejection rate. The drying process improved the rejection rate. We also observed the effect of the mixed solvent (water/ethanol) on permeation through the membranes with various pore sizes. In the case of the membrane with a dense skin layer, the solvent permeation showed relationships with solution viscosity, surface tension, and membrane-solvent interaction.  相似文献   

20.
使用均质和复合壳聚糖膜对二氧六环-水和丙酮-水溶液的渗透汽化分离性能进行了研究。结果显示,该膜对两种混合物的分离有很高的选择性和渗透速率。考察料液组成和温度对均质膜分离的影响,随温度升高,分离系数与通量同时增加。从渗透速率与温度的Arrhenius关系求得总的和各组分的表现渗透活化能,复合膜在保持高选择性的同时,渗透速率大幅度提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号