首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Furan‐containing benzoxazine monomers, 3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (P‐FBz) and bis(3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazinyl)isopropane (BPA‐FBz), were prepared using furfurylamine as a raw material. The chemical structures of P‐FBz and BPA‐FBz were characterized with FTIR, 1H NMR, elemental analysis, and mass spectrometry. Formation of furfurylamine Mannich bridge networks in the polymerizations of P‐FBz and BPA‐FBz increased the cross‐linking densities and thermal stability of the resulting polybenzoxazines. P‐FBz‐ and BPA‐FBz‐based polymers also exhibited high glass transition temperatures above 300 °C, high char yields, and low flammability with limited oxygen index values of 31. The dielectric (Dk = 3.21–3.39) and mechanical properties (high storage modulus of 3.0–3.9 GPa and low coefficient of thermal expansion of 37.7–45.4 ppm) of the P‐FBz‐ and BPA‐FBz‐based polymers were superior or comparable to other polybenzoxazines. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5267–5282, 2005  相似文献   

2.
A silicon‐containing benzoxazine BATMS‐Bz (1,3‐bis(3‐aminopropyl)tetramethyldisiloxane‐benzoxazine) was used for polybenzoxazine modification by means of formation of benzoxazine copolymers with 3,4‐dihydro‐3‐phenyl‐2H‐1,3‐benzoxazine (Ph‐Bz) and 3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (F‐Bz), respectively. Ph‐Bz/BATMS‐Bz copolymers showed a positive deviation due the presence of intermolecular hydrogen bonding. However, this effect was not observed with F‐Bz/BATMS‐Bz copolymers. Meanwhile, BATMS‐Bz incorporation exhibited significant effect on toughening polybenzoxazines. It is therefore demonstrated that BATMS‐Bz is a high performance modifier to simultaneously enhance the Tg and toughness of polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1007–1015, 2007  相似文献   

3.
The cocuring behaviors of 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (P‐ABz) and various N‐phenylmaleimide compounds were studied with DSC, FTIR, and TGA‐GC/MS. The presence of benzoxazine compound promoted the polymerization of maleimide groups. In contrast, 4‐hydroxyphenylmaleimide (MI‐OH) and 4‐maleimidobenzoic acid (MI‐COOH), which possess acidic moieties, showed an acid‐catalytic effect on the polymerization of benzoxazine groups. The cocuring composition of P‐ABz/MI‐COOH showed low polymerization temperatures, high glass transition temperature above 220 °C, and comparable thermal stability to conventional polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1890–1899, 2006  相似文献   

4.
A high‐molecular‐weight polymer (PBz) possessing reactive benzoxazine groups in the main chain was prepared through the Diels–Alder reaction using bis(3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazinyl)isopropane (BPA‐FBz) and bismaleimide (BMI) as monomers. The chemical structure of PBz is characterized with FTIR and 1H NMR. The polymer PBz was further thermally reacted with a high performance polymer (PBz‐R) through the ring‐opening addition reaction of benzoxazine groups and the addition reaction of maleimide groups. PBz‐R exhibit a high glass transition temperature of 242 °C, good thermal stability, high flame retardancy, high mechanical strength, and great flexibility. Another crosslinked polymer (PBz‐BR) curing from the mixture of BPA‐FBz and BMI was also prepared. The properties of PBz‐BR are also attractive but, however, not as good as what observed with PBz‐R. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6509–6517, 2008  相似文献   

5.
Two types of main‐chain type polybenzoxazines with amide and benzoxazine groups as repeating units in the main chain, termed as poly(amide‐benzoxazine), have been synthesized. They have been prepared by polycondensation reaction of primary amine‐bifunctional benzoxazine with adipoyl and isophthaloyl dichloride using dimethylacetamide as solvent. Additionally, a model reaction is designed from the reaction of 3,3′‐(4,4′‐methylenebis(4,1‐phenylene))bis(3,4‐dihydro‐2H‐benzo[e][1,3]oxazin‐6‐amine) with benzoyl chloride. The structures of model compound and polyamides are confirmed by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopies. Differential scanning calorimetry and FTIR are also used to study crosslinking behavior of both the model compound and polymers. Thermal properties of the crosslinked polymers are also studied by thermogravimetric analysis. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Soluble and thermally curable conducting high molecular weight polybenzoxazine precursors were prepared by oxidative polymerization 3‐phenyl‐3,4‐dihydro‐2H‐benzo[e][1,3] oxazine (P‐a) alone and in the presence of thiophene (Th) with ceric ammonium nitrate in acetonitrile. The structure of the precursors was confirmed by FTIR, 1H NMR, and DSC measurements, indicating the presence of a cyclic benzoxazine structure, together with small but varying amount of a ring opened phenolic structure. The resulting polymers exhibit conductivities around 10?2 S cm?1 and undergo thermal curing at various temperatures. Attempts to copolymerize P‐a with another electroactive monomer, pyrrole (Py), by a similar redox process were unsuccessful, which was attributed to the unfavourable oxidation potential of Py. The cured products exhibited high thermal stability but lower conductivity, than those of the precursors. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 999–1006, 2007  相似文献   

7.
The autocatalytic thermal polymerization behavior of three benzoxazine monomers containing carboxylic acid functionalities is reported. Several mixtures of these carboxylic monomers and 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine were prepared and their thermal polymerization behavior was analyzed by differential scanning calorimetry. The acid character of these reactive monomers increases the concentration of oxonium species, thus catalyzing the benzoxazine ring opening reaction. In this way the polymerization temperature decreased by as much as 100 °C in some cases. The existence of decarboxylation processes at high temperatures has been established by FTIR‐ATR and related to the increase in thermal stability observed by TGA in some cases. A relationship between the presence of carboxylic groups in the resulting materials and their flame retardancy behavior has also been established. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6091–6101, 2008  相似文献   

8.
A benzoxazine compound with a maleimide group, 3‐phenyl‐3,4‐dihydro‐2H‐6‐(N‐maleimido)‐1,3‐benzoxazine (HPM‐Ba), was prepared from N‐(4‐hydroxyphenyl)maleimide, formaldehyde, and aniline. The chemical structure of HBM‐Ba was identified by FT‐IR, 1H‐NMR, and elemental analysis. HPM‐Ba showed a melting point of 52–55 °C and good solubility in common organic solvents. HPM‐Ba showed a two‐stage process of thermal polymerization. The first stage arose from the polymerization of maleimide groups, and the second one was the ring‐opening reaction of benzoxazine groups. Fusible polymaleimides with a Tg of around 100 °C could be obtained by thermally polymerizing HPM‐Ba at 130 °C. Further polymerizing the polymaleimides at 240 °C resulted in a completely cured resin showing a Tg at 204 °C. Good thermal stability and self‐extinguishing behavior was observed with the cured polybenzoxazine resins. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5954–5963, 2004  相似文献   

9.
A series of new polybenzoxazines were synthesized based on diphenols containing (substituted) cyclohexyl moiety and were characterized by FT‐IR, 1H‐NMR, and 13C‐NMR spectroscopy. These new benzoxazine monomers exhibited better processability with lower peak cure temperature and a wide cure controllable window (CCW) as manifested in differential scanning calorimetric analysis. The cure analysis was performed by FT‐IR spectroscopy. Glass transition temperature of new polybenzoxazines varied from 170 to 205°C. The cyclohexyl bridge groups facilitated ring opening, resulting in polymer with improved thermal stability in comparison to bisphenol A‐based benzoxazine as assessed by the various thermal analyses. The water contact angles of polybenzoxazines containing (substituted) cyclohexyl moieties were higher than that of bisphenol A‐based polybenzoxazine, implying their higher hydrophobicity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
To evaluate the influence of the electronic effects on the polymerization temperature, we looked at several 3‐phenyl‐3,4‐dihydro‐2‐H‐1,3‐benzoxazine monomers with electron‐withdrawing or electron‐donating groups in the 6 and 4′ positions. The monomers were synthesized and characterized using different synthetic methods to achieve the best possible results. The thermal polymerization of these benzoxazine monomers was analyzed by differential scanning calorimetry, and the polymerization behavior and the polymer characteristics were related to the electronic character of the substituent and the polymerization mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3353–3366, 2008  相似文献   

11.
3‐Phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine ( m 1 ) underwent cationic ring opening polymerization using BF3·OEt2 in alcoholic solution under mild conditions. The polymerization of m 1 proceeds through an intermediate hemiaminal ether leading mainly to the formation of polybenzoxazines with diphenylmethane bridges, and not only the classical Mannich‐type ones. During the first stages of the reaction, low‐molecular weight soluble oligomers containing benzoxazine rings are formed. At longer polymerization times, the propagation proceeds conventionally through the phenolic active sites. This polymerization mechanism is extensible to other substituted 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazines but fails in the case of 3‐alkyl‐3,4‐dihydro‐2H‐1,3‐benzoxazines or when the phenyl group in Position 3 have a substituent in the p‐position. Spectroscopic studies and kinetic experiments using model reactions and deuterium labeled benzoxazines, allow proposing a plausible different polymerization mechanism. These soluble benzoxazine‐containing polymers can be conveniently processed and impregnated on appropriate substrates before underwent crosslinking producing materials with comparable properties to those of conventional bis‐benzoxazines. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5075–5084  相似文献   

12.
A new class of polybenzoxazine/montmorillonite (PBz/MMT) nanocomposites has been prepared by the in situ polymerization of the typical fluid benzoxazine monomer, 3‐pentyl‐5‐ol‐3,4‐dihydro‐1,3‐benzoxazine, with intercalated benzoxazine MMT clay. A pyridine‐substituted benzoxazine was first synthesized and quaternized by 11‐bromo‐1‐undecanol and then used for ion exchange reaction with sodium ions in MMT to obtain intercalated benzoxazine clay. Finally, this organomodified clay was dispersed in the fluid benzoxazine monomers at different loading degrees to conduct the in situ thermal ring‐opening polymerization. Polymerization through the interlayer galleries of the clay led to the PBz/MMT nanocomposite formation. The morphologies of the nanocomposites were investigated by both X‐ray diffraction and transmission electron microscopic techniques, which suggested the partially exfoliated/intercalated structures in the PBz matrix. Results of thermogravimetric analysis confirmed that the thermal stability and char yield of PBz nanocomposites increased with the increase of clay content. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
A phenol/aniline type monofunctional benzoxazine monomer, PH‐a , is synthesized and highly purified to study the intrinsic thermal ring‐opening polymerization of benzoxazines without the influence of any impurity. The successful synthesis of the monomer and its corresponding chemical structure are confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. Purity of the compound is evaluated through differential scanning calorimetry (DSC) as well as elemental analysis (EA). Moreover, the thermal behavior of benzoxazine monomer toward polymerization is also studied by DSC, indicating that the highly purified benzoxazine monomer actually polymerize upon heating. The results present evidence of an intrinsic tendency for 1,3‐benzoxazines to undergo thermally induced ring‐opening polymerization upon heating only without any impurity participating during the reaction. This reveals that polybenzoxazines can be obtained by both the traditional thermally accelerated (or activated) polymerization, where impurities or purposefully added initiators are involved in the reaction; or, by the classic thermal polymerization, where only heat is enough to initiate the reaction. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3434–3445  相似文献   

14.
A novel renewable based benzoxazine, 3‐(furan‐2‐ylmethyl)?8‐methoxy‐3,4‐dihydro‐2H‐1,3‐benzoxazine‐6‐formyl (Va‐Bz), has been synthesized from a lignin derived chemical “vanillin” without solvents. Poly (Va‐Bz) has high Tg and excellent thermal and adhesive properties. A mechanism of cross‐linking, due to electrophilic substitution at furan and decarboxylation of carboxylic group of benzene ring, is suggested. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 7–11  相似文献   

15.
A new class of high‐performance resins of combined molecular structure of both traditional phenolics and benzoxazines has been developed. The monomers termed as methylol‐functional benzoxazines were synthesized through Mannich condensation reaction of methylol‐functional phenols and aromatic amines, including methylenedianiline (4,4′‐diaminodiphenylmethane) and oxydianiline (4,4′‐diaminodiphenyl ether), in the presence of paraformaldehyde. For comparison, other series of benzoxazine monomers were prepared from phenol, corresponding aromatic amines, and paraformaldehyde. The as‐synthesized monomers are characterized by their high purity as judged from 1H NMR and Fourier transform infrared spectra. Differential scanning calorimetric thermograms of the novel monomers show two exothermic peaks associated with condensation reaction of methylol groups and ring‐opening polymerization of benzoxazines. The position of methylol group relative to benzoxazine structure plays a significant role in accelerating polymerization. Viscoelastic and thermogravimetric analyses of the crosslinked polymers reveal high Tg (274–343 °C) and excellent thermal stability when compared with the traditional polybenzoxazines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
We propose three approaches to obtain flame‐retardant benzoxazines. In the first approach, we synthesize a novel benzoxazine (dopot‐m) from a phosphorus‐containing triphenol (dopotriol), formaldehyde, and methyl amine. Dopot‐m is copolymerized with a commercial benzoxazine [6′,6‐bis(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazineyl)methane (F‐a)] or diglycidyl ether of bisphenol A (DGEBA). The thermal properties and flame retardancy of the F‐a/dopot‐m copolymers increase with the content of dopot‐m. As for the dopot‐m/DGEBA curing system, the glass‐transition temperature of the dopot‐m/DGEBA copolymer is 252 °C, which is higher than that of poly(dopot‐m). The 5% decomposition temperature of the dopot‐m/DGEBA copolymer increases from 323 to 351 °C because of the higher crosslinking density caused by the reaction of phenolic OH and epoxy. In the second approach, we incorporate the element phosphorus into benzoxazine via the curing reaction of dopotriol and F‐a. After the curing, the thermal properties of the F‐a/dopotriol copolymers are almost the same as those of neat poly(F‐a), and this implies that we can incorporate the flame‐retardant element phosphorus into the polybenzoxazine without sacrificing any thermal properties. In the third approach, we react dopo with electron‐deficient benzoxazine to incorporate the element phosphorus. After the curing, the glass‐transition temperatures of polybenzoxazines decrease slightly with the content of dopo, mainly because of the smaller crosslinking density of the resultant polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3454–3468, 2006  相似文献   

17.
Two polybenzoxazines are cured in an autoclave from the polyfunctional benzoxazine monomers, 8,8′-bis(3,4-dihydro-3-phenyl-2H-1,3-benzoxazine) and 6,6′-bis(2,3-dihydro-3-phenyl-4H-1,3-benzoxazinyl) ketone. The density and tensile properties of these polybenzoxazines are measured at room temperature. Dynamic mechanical tests are performed to determine the Tg, crosslink density, and the activation enthalpy of the glass-transition process for these two polybenzoxazines. The effect of postcure temperature on the Tg of the polymers is investigated and discussed in terms of crosslink density. Fourier transform infrared (FTIR) spectroscopy is also applied for the molecular characterization of the curing systems. Thermal properties of these polybenzoxazines are studied in terms of isothermal aging and decomposition temperature via thermogravimetric analysis. These two polybenzoxazines show mechanical and thermal properties similar to or better than bismaleimides and some polyimides. They also show very high char yield after being carbonized in a nitrogen atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3257–3268, 1999  相似文献   

18.
A series of difunctional fluorene-based benzoxazine monomers were synthesized from the reaction of 9,9-bis-(4-hydroxyphenyl)-fluorene with formaldehyde and primary amines including aniline, o-toluidine, n-butylamine, and n-octylamine. Their chemical structures were confirmed by FT-IR, 1H and 13C NMR analyses. The curing behaviors of the precursors were monitored by differential scanning calorimetry (DSC) and FT-IR. The thermal properties of cured polymers were evaluated with DSC and thermogravimetric analysis (TGA). The fluorene-based polybenzoxazines show the typical curing characteristic of oxazine ring-opening for difunctional benzoxazines centred at 231-250 °C, and remarkably higher glass transition temperature and better thermal stability ascribed to the high rigidity, high aromatic content, and intermolecular and intramolecular hydrogen bonding. The thermal decomposition temperature and char yield of aromatic amine-fluorene-based polybenzoxazines are much higher than those of aliphatic amine-based polybenzoxazines.  相似文献   

19.
采用无溶剂法合成了新型双酚A和双酚AF(六氟双酚A)基手性和消旋苯并噁嗪单体,利用红外光谱(FTIR)、核磁共振氢谱(1H-NMR)、旋光仪和高效液相色谱(HPLC)对单体结构和性质进行了表征,通过差式扫描量热仪(DSC)和热重分析仪(TGA)对苯并噁嗪的固化行为及聚合物的热性能进行了研究.结果表明,无溶剂法合成苯并噁嗪单体具有反应速度快、产率高、对环境友好等特点;双官能度消旋苯并噁嗪单体由内消旋和外消旋异构体组成,且内消旋苯并噁嗪单体含量高于外消旋;手性和消旋苯并噁嗪单体具有相同的开环聚合行为;由于消旋苯并噁嗪分子的立体构型不同,使得聚苯并噁嗪的自由体积减小,分子链的堆积更加致密,因而消旋聚苯并噁嗪的玻璃化转变温度(Tg)和热稳定性均高于手性聚苯并噁嗪和传统的双酚A-苯胺型聚苯并噁嗪;此外,C—F键具有高的解离能,因而双酚AF基聚苯并噁嗪的热性能显著提高.  相似文献   

20.
Three phosphorus-containing bisphenol compounds, bis(4-hydroxyphenyl)phenylphosphine oxide (BHPPO), bis(4-hydroxyphenoxyphenyl)phenylphosphine oxide (BPPPO), and bis(4-hydroxyphenoxy)phenylphosphine oxide (BPHPPO) have been synthesized as starting materials for the synthesis of benzoxazine monomers. Benzoxazine monomers containing phenylphosphine oxide have been prepared and subsequently characterized by FT-IR and 1H NMR. The monomers are thermally initiated and polymerized via ring-opening polymerization. Thermogravimetric analysis indicates that phosphorylation can have a profound effect on increasing char yield and on thermal degradation temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号