首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
澳大利亚高盐煤中钠在热解过程中的形态变迁   总被引:2,自引:0,他引:2  
通过对高钠煤进行水洗以及0.1 mol/L的HCl洗涤,并在固定床上考察了不同洗煤热解后的半焦中Na的挥发性及其形态变迁。热解后的半焦用水和0.1 mol/L的HCl逐级萃取,将热解半焦中的钠分为水溶态钠,水不溶但酸溶态钠以及酸不溶态钠。研究结果表明,实验煤中的钠大部分是以水溶态的NaCl盐形式存在,在500℃~550℃由于以羧酸盐形式存在的有机钠以钠原子的形式释放使得在该温度范围内钠的挥发性出现极大值,而酸洗煤由于在600℃以上有一部分酸不溶态的钠转化为水不溶但酸溶态的钠,使得钠的挥发性又有所增加。原煤中的可挥发钠热解后少部分在高温下会转化为水溶态的钠,而水洗煤中的钠随着热解温度的升高与SiO2反应转化为硅酸盐形式存在的酸不溶态的钠。  相似文献   

2.
基于准东煤中Na/Ca的赋存形态,采用管式加热炉研究了准东煤中Na/Ca在惰性气氛下的释放特性和形态转变。结果表明,水溶态Naw在加热温度t ≤ 600℃时先转变成不可溶态Nare,随着温度升高,不可溶态Nare又重新转变成水溶态Naw,当加热温度t > 800℃时,Na大量释放。酸溶态Caac在加热温度t ≤ 700℃时先分解生成CaO并且与其他矿物组分反应转变成不可溶态Care,随着温度升高,不可溶态Care逐渐转变成酸溶态Caac和水溶态Caw。相同温度条件下,Ca的释放率低于Na的释放率,少量酸溶态有机Ca随挥发分释放而以气相形式释放。  相似文献   

3.
煤与生物质的相互作用已被广泛研究。但是,其相互作用机制通常是基于混合焦样的物理化学结构和反应性而提出。在这项工作中,基于不同形状和粒度将无烟煤与生物质共热解后的混合焦分离,然后通过分析分离后煤焦的结构和反应性来揭示煤与生物质相互作用机制。在热解温度为600和900℃条件下,在固定床反应器中制备了混合有不同比例的秸秆(CS)的无烟煤焦样。采用了电感耦合等离子体发射光谱法(ICP-OES)和X射线衍射(XRD)对煤焦的AAEM浓度和微晶结构进行了检测。利用TGA设备分析了分离后的煤焦与CO2的气化反应性。结果表明,随着掺混比例从0增加到80%,煤焦中活性K和Mg的浓度逐渐增加,并形成更为无序的碳结构。共热解过程中,更多的AAEM种类被混合物中的煤焦通过挥发分-焦相互作用捕获,而不是随生物质挥发分逸出。同时,热解温度的升高引起了K和Na挥发和失活,也导致石墨化度的降低。而且,CS的添加和更低的热解温度均可提高煤焦的气化反应性。此外,在煤焦的碱性指数AI与反应性指数R0.5之间建立了较好的线性关系(R2=0.9009),表明在煤与生物质共气化过程中,AAEMs对提高煤焦气化反应活性起主导作用。  相似文献   

4.
煤与生物质的相互作用已被广泛研究。但是,其相互作用机制通常是基于混合焦样的物理化学结构和反应性而提出。在这项工作中,基于不同形状和粒度将无烟煤与生物质共热解后的混合焦分离,然后通过分析分离后煤焦的结构和反应性来揭示煤与生物质相互作用机制。在热解温度为600和900℃条件下,在固定床反应器中制备了混合有不同比例的秸秆(CS)的无烟煤焦样。采用了电感耦合等离子体发射光谱法(ICP-OES)和X射线衍射(XRD)对煤焦的AAEM浓度和微晶结构进行了检测。利用TGA设备分析了分离后的煤焦与CO_2的气化反应性。结果表明,随着掺混比例从0增加到80%,煤焦中活性K和Mg的浓度逐渐增加,并形成更为无序的碳结构。共热解过程中,更多的AAEM种类被混合物中的煤焦通过挥发分-焦相互作用捕获,而不是随生物质挥发分逸出。同时,热解温度的升高引起了K和Na挥发和失活,也导致石墨化度的降低。而且,CS的添加和更低的热解温度均可提高煤焦的气化反应性。此外,在煤焦的碱性指数AI与反应性指数R_(0.5)之间建立了较好的线性关系(R~2=0.9009),表明在煤与生物质共气化过程中,AAEM s对提高煤焦气化反应活性起主导作用。  相似文献   

5.
在不同水蒸气体积分数及温度条件下制备了相同焦产率的NaCl浸渍煤的煤焦样品,并利用电感耦合等离子体质谱仪分析了不同煤焦中钠的赋存形态及含量,研究了水蒸气及温度对煤热转化过程中钠迁徙转化的影响。结果表明,水蒸气体积分数的增加,一方面,增强了煤热转化过程中水溶态钠的释放;另一方面,也促进了水溶态钠向醋酸铵溶态、盐酸溶态以及不溶态钠的转化,使得钠的释放受到一定程度抑制。煤焦结构演化对碱金属钠释放具有重要影响。水蒸气的气化反应引起煤焦缩聚程度增加,小芳香环缩聚形成大芳香环结构时会对钠起到一定的包裹作用,使得钠的释放受到抑制;同时,气化反应产生的煤焦比表面积越大,越有利于钠直接释放。提高反应温度一方面会促进水溶态钠的释放;同时也会促进水溶态钠向其他溶态形式钠的转化,使得钠析出率随反应温度上升而增加的趋势逐渐变缓。  相似文献   

6.
利用加压管式反应器对准东煤进行了一系列热解实验,并采用溶剂逐级萃取的方法研究了煤中各赋存形态钠在不同热解温度、停留时间及其压力下的变迁规律。研究发现,原煤中钠主要是以水合离子态和钠长石的形式存在,有机态钠含量较少。在500-700℃时,随着挥发分的释放,水可溶性钠结合到煤焦的碳基质上,转化为盐酸可溶但水不可溶性的钠,少量有机钠会挥发至气相中。在700-900℃时,可溶性钠与高岭土等矿物质反应生成盐酸不可溶性钠。1 000℃时,钠的挥发量显著增加;部分高岭土与方解石分解生成的氧化钙反应生成钙长石,抑制了可溶性钠与高岭土之间的反应。煤中各形态钠的变迁主要发生在热解初期,与挥发分的释放同时进行。提高热解压力对钠的变迁行为没有影响。  相似文献   

7.
在固定床反应器中研究了钾在热解和水蒸气气化过程中的变迁,并在TG-DSC上考察了钾系催化剂对煤焦水蒸气气化的催化效果以及随钾化合物形态变化的关系。结果表明,干混法和浸渍法添加碳酸钾对煤焦水蒸气气化的催化效果显著,煤焦的气化反应性随着钾添加量的增加而增大,当催化剂添加到一定量时催化效果陡增,同时神府煤钾的负荷饱和添加量为10%。在煤样热解和气化过程中,钾的化学形态会发生变化,发现并定量了还原态钾中间体的生成。在气化过程中碳酸钾的催化规律和还原态钾中间体的数量之间存在对应关系,当碳转化率为0.2~0.4时,气化速率和还原态钾中间体的数量达到最大值。在700~800℃,钾系催化剂的催化作用和还原态钾中间体的数量之间也存在对应关系,即碳酸钾催化效果较好,氯化钾的催化效果较差,硫酸钾的催化效果随温度的变化明显。  相似文献   

8.
使用高温气化固定床实验系统开展了CO2/H2O气化条件下,红沙泉煤中碱(土)金属(AAEMs)的分布情况及其对煤焦气化反应活性的影响。结果表明,气化温度低于灰熔点温度时,Na元素在煤焦表面离散分布,不存在明显的团簇富集现象;气化温度高于灰熔点温度时,Na元素在煤焦表面表现出轻微的富集现象。气化过程中K元素离散分布在煤焦表面,Ca和Mg元素在煤焦表面的富集现象比较明显,含Ca、Mg类矿物迁移团簇在煤焦表面凹陷处,形成尺寸较大的灰球,Ca、Mg元素在分布上存在一定的依赖性。气化残余焦的表观活化能和指前因子随着碳转化率的增加而增加,煤焦的反应活性变低。  相似文献   

9.
在滴管炉内对中国三种不同煤阶的典型煤种在800~1 400 ℃进行快速热解实验,利用XRD和氮气气体吸附法对所得煤焦进行微晶结构和孔隙特征分析,在热重分析仪上进行CO2气化反应活性的测定,研究不同热解温度煤焦结构特性与气化活性之间的关系。结果表明,随着热解温度的升高,内蒙古褐煤焦和神府烟煤焦的比表面积在1 200 ℃达到极大值,但气化活性却相对较低;遵义无烟煤焦在800~1 200 ℃气化活性逐渐提高,但比表面积在900 ℃达到极大值,表明煤焦比表面积与气化活性不存在严格关联。煤焦碳微晶结构变化所反映出煤焦石墨化进程与煤焦气化活性随热解温度的变化具有一致的变化趋势,表明快速热解煤焦的碳微晶结构变化对煤焦气化活性的影响更大。  相似文献   

10.
本研究通过热重与高温热台显微镜分析了神木煤焦颗粒的原位气化行为,探究了单颗粒NaAlO_2催化剂的原位催化作用,并结合SEM-EDX探究了碱金属的分布。结果表明,在气化初期,面积法与热重法得到的碳转化率曲线较为一致;在气化后期,煤焦中灰分会形成颗粒的骨架,在气化过程中使煤焦颗粒面积不发生变化,灰分阻碍气化剂向煤焦扩散,使气化速率降低,通过面积法计算的碳转化率小于热重法。单独的NaAlO_2颗粒也具有催化作用,距离催化剂颗粒越近,碱金属的迁移量越大,煤焦颗粒的气化反应性越好,NaAlO_2颗粒在900℃下迁移距离大于840μm。  相似文献   

11.
对一种澳大利亚低阶煤中,钠、硅和硫在热解过程中的相互作用进行了研究,以便深入了解钠的固硫作用和硫对流化床燃烧和气化中颗粒团聚的影响。制备了水洗、酸洗煤样和酸洗、乙酸钠离子交换煤样,样品在马弗炉中以17.7℃/min升至1000℃进行程序升温热解。对700℃-100℃热解半焦样品的依次水洗、酸洗、SEM—EDX和X射线元素扫描分析表明,部分有机结合的钠形成水溶性Na2O和NaOH化合物,水溶性的硅酸钠,以及与半焦中的硫形成酸不溶组分。最后一点解释了为何以往研究中发现,热解过程中有机结合的钠具有固硫作用,以及固硫历程中为何未发现Na2S的生成。在硅酸钠区域边缘存在的高硫区域,在流化床燃烧和气化过程中将形成含硫黏性相,导致床料的黏结。当用于酸洗、钠离子交换煤样的乙酸钠从0.25mol/L增加到1.0mol/L,固硫率将增加10%。相应的酸不溶钠组分的增加表明,酸不溶钠/硫组分随乙酸钠浓度的增加而增加,从而导致固硫率上升。  相似文献   

12.
为了获得循环流化床工艺下不同反应气氛对准东高钠煤中钠的迁移转化与积灰特性的影响,在0.4t/d循环流化床实验装置上开展了相同床温(950℃)下的新疆沙尔湖高钠煤的气化(还原性气氛)与燃烧(氧化性气氛)实验研究。结果表明,气化和燃烧气氛下飞灰与积灰中Na主要以NaCl的形式存在;气化比燃烧更容易将Na、Cl固留在底渣和飞灰中,相应的进入气相中的Na、Cl更少;燃烧气氛下,部分NaCl会被烟气中的SO_2硫化,生成稳定性更高的Na_2SO_4并冷凝在飞灰和积灰棒表面,燃烧过程中产生的飞灰粒径更细,积灰更严重;沙尔湖煤燃烧与气化过程中存在HCl对金属壁面的腐蚀。  相似文献   

13.
对新疆的两种高钠煤(伊犁煤YL、呼图壁煤HTB)进行了N2、CO2和H2O气氛和不同温度下钠迁移的研究。采用逐级萃取和湿法消解法确定了原煤、半焦中钠的赋存形态,定量研究了两种煤中钠的挥发及迁移规律。结果表明,YL煤的形态钠中水溶钠占80.08%,HTB煤的形态钠中不溶钠占61.54%。不同气氛下,升高温度都可促进两种煤中钠的挥发,半焦中水溶钠比例减小,醋酸铵可溶钠比例会出现先增加后减少现象,盐酸可溶钠比例呈增加趋势。对于YL煤,CO2气氛可抑制钠的挥发,H2O蒸气可促进钠的挥发;900℃时,YL煤CO2气氛下钠挥发仅为N2气氛下的50.25%,而H2O气氛钠挥发为N2气氛下的111.45%。对于HTB煤,CO2气氛也可抑制钠的挥发,900℃时CO2气氛下钠挥发为N2气氛的80.91%;HTB煤在H2O蒸气下,800℃之前钠挥发高于N2,当900℃时,钠挥发略低于N2气氛。YL煤形态钠中以水溶钠为主,其挥发的同时会向盐酸可溶钠及不溶钠转变。而HTB煤形态钠中以不溶钠为主,其次是水溶钠,CO2和H2O气氛能促进不溶钠向其他可溶态钠转变。  相似文献   

14.
五彩湾煤中钠在热解过程中的形态变迁   总被引:1,自引:0,他引:1  
采用不同萃取液进行了新疆准东五彩湾高钠煤萃取实验,并利用微波消解仪和电感耦合等离子体原子发射光谱仪,分析了原煤和不同萃取过程下制得的煤样中的钠元素,确定了五彩湾煤中钠的存在形式。在氮气氛围下进行了原煤及不同萃取过程下煤样的热解实验,分析了热解半焦中钠的存在形式并确定煤中不同存在形式钠在热解过程中的演变规律。结果表明,五彩湾煤中钠主要为水溶钠,有机钠主要以羧酸盐形式存在。450~650℃时,实验煤样热解过程中部分水溶钠和盐酸溶钠会转化为醋酸铵溶钠。在热解过程中,实验煤样中水溶钠和醋酸铵溶钠的析出主要集中于650~850℃,1050℃时则有部分盐酸溶钠析出,此时,在实验条件下钠的挥发达到最大值。煤样半焦中的钠主要以不可溶钠形式存在。  相似文献   

15.
准东高钠煤热解过程中钠的迁移特性实验研究   总被引:2,自引:0,他引:2  
针对新疆准东煤田高钠煤(简称准东高钠煤)在发电锅炉燃烧时遇到结渣黏污严重的问题,基于立式管式炉热解,利用电感耦合等离子体-原子发射光谱(ICP-AES)、X射线衍射(XRD)以及扫描电镜-能谱(SEM-EDX)等检测手段,分析了准东高钠煤在不同热解温度下碱金属钠的析出特性、赋存形态以及热解半焦的微观形貌.利用Fact sage 6.1化学热力学平衡计算软件分析了碱金属的析出形式.结果表明,准东高钠煤中的碱金属钠在热解过程中有部分析出,开始的析出温度为600 ℃,当热解温度达900 ℃时,碱金属钠的析出率为40.2%;碱金属钠在热解过程中主要以NaCl的形式析出;热解温度低于900 ℃时,没有熔融态物质生成.  相似文献   

16.
减少生物质在热转化反应器中Cl与碱金属K和Na以气态组元逸出可有效遏制积灰、腐蚀等现象和减少污染气体排放。采用化学热力学平衡分析方法,在400K~1600K研究了秸秆、树皮、木屑、废木和橄榄渣五种生物质在过剩空气系数分别为0、0.4、0.8的热解和气化过程中Cl与碱金属K和Na的赋存形态变化及逸出特性。结果表明,Cl在热解和气化过程中主要是以KCl(s)、HCl(g)、KCl(g)、(KCl)2(g)和NaCl(g)化合物赋存并相互转化;在800K~1000K时,含Cl固态组元逐渐转化为气态组元;K和Na在900K时开始以气态组元逸出,且热解过程有少量KCN(g)和NaCN(g)逸出,而气化过程,温度大于1000K随过剩空气系数的增加,KCl(g)、K(g)和Na(g)等气态组元量逐渐减少,逐渐转化为NaCl(g)、KOH(g)和NaOH(g);减少Cl和碱金属K和Na逸出的理论最佳热解和气化温度分别为800K和900K。  相似文献   

17.
利用循环流化床对天池木垒高碱煤进行了气化实验研究,获得了天池木垒高碱煤在循环流化床上的结渣特性及碱金属迁移规律,并对实验中出现的床内颗粒聚团现象进行了分析。结果表明,不同存在形态的碱金属在煤气化过程中的迁移规律不同,水溶钠和醋酸铵溶钠在煤气化过程中以气态形式析出,不溶钠主要存在半焦中;随着气化温度升高,底渣和煤气中钠含量增加,飞灰中钠含量减少;尾部管道温度降低过程中,煤气中钠的冷凝速率明显高于钾;天池木垒高碱煤气化过程中容易引起床内颗粒聚团,床温越高,颗粒聚团现象越明显,床温波动越大;碱金属与灰分中矿物成分及床料中SiO2反应生成黏性低温共熔物是导致颗粒聚团的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号