首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new series of diorganotin complexes of the type R2SnL (L1: N‐(2‐hydroxy‐5‐chlorophenyl)‐ 3‐ethoxysalicylideneimine, R = Me, (Me2SnL1), R = n‐Bu, (n‐Bu2SnL1), R = Ph, (Ph2SnL1), L2: N‐(2‐hydroxy‐4‐nitro‐5‐chlorophenyl)‐3‐ethoxysalicylideneimine, R = Ph, Ph2SnL2, L3: N‐(2‐hydroxy‐4‐nitrophenyl)‐3‐methoxysalicylideneimine, R = Me, (Me2SnL3), R = n‐Bu, (n‐Bu2SnL3), L4: N‐(2‐hydroxy‐4‐nitrophenyl)‐3‐ethoxysalicylideneimine, R = Me, (Me2SnL4), R = n‐Bu, (n‐Bu2SnL4)) were synthesized and characterized by elemental analysis, infrared (IR), 1H, and 13C NMR mass spectroscopic techniques, and electrochemical measurements. Ph2SnL1 and Ph2SnL2 were also characterized by X‐ray diffraction analysis and were found to show a fivefold C2NO2 coordination geometry nearly halfway between a trigonal bipyramidal and distorted square pyramidal arrangement. The C Sn C angles in the complexes were calculated using Lockhart's equations with the 1J(117/119Sn‐13C) and 2J(117/119Sn‐1H) values from the 1H NMR and 13C NMR spectra. Biocidal activity tests against several micro‐organisms and some fungi indicate that all the complexes are mildly active against Gram (+) bacteria and the fungi, A. niger and inactive against Gram (−) bacteria. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:373–385, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20628  相似文献   

2.
Five novel organotin complexes with the anthraquinone dyes alizarin (1,2‐dihydroxyanthraquinone) and purpurin (1,2,4‐trihydroxyanthraquinone) were synthesized and characterized by elemental analyses, FTIR and NMR spectroscopy (1H, 13C and 119Sn). The crystal and molecular structures of four complexes were determined by X‐ray diffraction on single crystals: [Bu2Sn(aliz)(H2O)]·C2H5OH ( A1 ·EtOH), [Bu2Sn(aliz)(dmso)]2 ( A3 ), [(Bu2Sn)3O(Hpurp)2] ( P1 ) and [Bu2Sn(Hpurp)(dmso)]2 ( P2 ), where H2aliz = alizarin and H3purp = purpurin. The coordination mode of the ligands is identical to that found in their Al/Ca complexes, where they act as dianionic tridentate ligands forming five and six‐membered fused chelate rings. The coordination to the tin atoms occurs exclusively via the 1,2‐ phenolate oxygen and the adjacent quinoid oxygen atoms. The complexes A1 , A3 and P1 are dimers with hepta‐coordinated tin atoms in form of a slightly distorted pentagonal bipyramid. The trinuclear complex P2 contains two pentacoordinated and one heptacoordinated tin atoms.  相似文献   

3.
The dimeric tetraorganodistannoxane [n‐Bu2(F)SnOSn(F)t‐Bu2]2 ( 1 ) was prepared by the reaction of (t‐Bu2SnO)3 with n‐Bu2SnF2 and characterized in solution by multinuclear NMR spectroscopy and ESI MS spectrometry and in the solid state by 119Sn MAS NMR spectroscopy and single crystal X‐ray diffraction.  相似文献   

4.
Two organotin (IV) derivatives, [Bu2‐ Sn(HO3PO‐i‐Pr)2]2 ( 1 ) and [Bu2Sn(HO3POPh)2]2 ( 2 ), have been prepared by reactions of di‐n‐butyltin oxide with the phenylphosphoric acid and isopropylphosphoric acid, respectively. Characterization of the complexes 1 and 2 was achieved using elemental analysis, IR, NMR (1H, 13C, 31P, and 119Sn) spectroscopy, and X‐ray crystallography diffraction analysis. The X‐ray data reveal that complexes 1 and 2 are dimers containing eight‐membered Sn2O4P2 inorganic ring. Interestingly, complexes 1 and 2 are further linked into 2D network through intermolecular O … Sn weak contacts and O H … O weak hydrogen‐bonding interactions. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:298–303, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20610  相似文献   

5.

The interaction of Bu2Sn(OPri)2 with a trifunctional tetradentate Schiff base (LH3) (where H3L = HOC6H4CH═NCH3C(CH2OH)2) yields the precursor complex Bu2Sn(LH) 1, which, on equimolar reactions with different metal alkoxides [Al(OPri)3, Bu3Sn(OPri), Ge(OEt)4]; Al(Medea)(OPri) (where Medea = CH3N- (CH2CH2O)2); and Me3SiCl in the presence of Et3N], affords, respectively, the complexes Bu2Sn(L)Al(OPri)2 2, Bu2Sn(L)Al(Medea) 3, Bu2Sn(L)Bu3Sn 4, Bu2Sn(L)Ge(OEt)3 5, and Bu2Sn(L)SiMe3 6. The reactions of 2 with 2,5-dimethyl-2,5-hexanediol in a 1:1 ratio and with acetylacetone (acacH) in a 1:2 molar ratio afforded derivatives Bu2Sn(L)Al(OC(CH3)2CH2CH2C(CH3)2 O) 7 and Bu2Sn(L)Al(acac)2 8, respectively. All of the derivatives 18 have been characterized by elemental analyses, molecular weight measurements, and spectroscopic [IR and NMR (1H, 119Sn, 29Si, and 27Al)] studies.  相似文献   

6.
Complexes [Me2SnL2 ( I ), Me3SnL ( II ), Et2SnL2 ( III ), n‐Bu2SnL2 ( IV ), n‐Bu3SnL ( V ), n‐Oct2SnL2 ( VI )], where L is (E)‐3‐furanyl‐2‐phenyl‐2‐propenoate, have been synthesized and structurally characterized by vibrational and NMR (1H, 13C and 119Sn) spectroscopic techniques in combination with mass spectrometric and elemental analyses. The IR data indicate that in both the di‐ and triorganotin(IV) carboxylates the ligand moiety COO acts as a bidentate group in the solid state. The 119Sn NMR spectroscopic data, 1J[119Sn,13C] and 2J[119Sn, 1H], coupling constants show a four‐coordinated environment around the tin atom in triorganotin(IV) and five‐coordinated in diorganotin(IV) carboxylates in noncoordinating solvents. The complexes have been screened against bacteria, fungi, and brine‐shrimp larvae to assess their biological activity. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:612–620, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20488  相似文献   

7.
A series of neutral complexes, namely, [N‐(2‐hydroxy‐4‐nitrophenyl)‐3‐hydroxysalicylideneiminato]‐ diphenyltin(IV) ( Ia ), [N‐(2‐hydroxy‐4‐nitrophenyl)‐3‐methoxysalicylideneiminato]diphenyltin(IV) ( IIa ) and [N‐(2‐hydroxy‐4‐nitrophenyl)‐3‐ethoxysalicylideneiminato]diphenyltin(IV) ( IIIa ) were prepared by the reaction of diphenyltin dichloride on the corresponding Schiff bases. The Schiff bases were the reaction products of 2‐hydroxy‐4‐nitroaniline and appropriate salicylaldehydes. All the compounds were characterized by elemental analysis, 1H‐NMR, 13C‐NMR, IR and mass spectroscopy. Compound IIIa was also characterized by single crystal X‐ray diffraction and shows a C2NO2 coordination geometry nearly half‐way between a trigonal bipyramidal and square pyramidal arrangement. In the solid state, π? π interactions exist between the aniline fragments of neighbouring molecules. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The controlled base hydrolysis of 2,6‐Mes2C6H3SnCl3 ( 1 ; Mes=mesityl) provided 2,6‐Mes2C6H3Sn(OH)Cl2?H2O ( 2 ) and the trinuclear organostannonic acid trans‐[2,6‐Mes2C6H3Sn(O)OH]3 ( 3 ), respectively. In moist C6D6, 3 reversibly reacts with water to give the monomeric organostannonic acid 2,6‐Mes2C6H3Sn(OH)3 ( 3a ). The reaction of 3 with (tBu2SnO)3, Ph2PO2H, and NaH, gives rise to the multinuclear hypercoordinated organostannoxane clusters [tBu2Sn(OH)OSnR(OH)2OC(OSntBu2OH)2(O)SnR(OH)(H2O)]2 ( 5 ), [RSn(OH)2(O2PPh2)]2 ( 6 ), and Na3(RSn)4O6(OH)3 ( 7 ), respectively (R=2,6‐Mes2C6H3). The characterization of the new compounds is achieved by multinuclear NMR spectroscopy and electrospray mass spectrometry in solution and 119Sn MAS NMR spectroscopy, IR spectroscopy, and X‐ray crystallography in the solid‐state.  相似文献   

9.
The preparation and structures of 2, 2′‐dihydroxyazobenzenato‐dibutyl‐tin [Bu2SnL] and 2, 2′‐dihydroxyazobenzenato‐dimethyl‐tin [Me2SnL] are described. The complexes were characterized by IR, NMR (1H, 13C, 119Sn) and UV/VIS spectra. The crystal structures were determined by X‐ray diffraction on single crystals. [Bu2SnL]: monoclinic, space group P21/c, cell constants at 208 K: a = 860.73(5), b = 973, 51(18), c = 2340.0(3) pm, β = 93.615(11)°; R1 = 0.0546. [Me2SnL]: orthorhombic, space group Pbcn, cell constants at 208 K: a = 1914.6(4), b = 1041.3(3), c = 1323.27(14) pm; R1 = 0.0529.  相似文献   

10.
Treatment of {HNR}2C10H6‐1, 8 [R = SiMe3 ( 1 ), CH2But ( 2 )] with Sn[N(SiMe3)2]2 afforded the cyclic stannylene Sn[{NR}2C10H6‐1, 8] [R = SiMe3 ( 3 ), CH2But ( 4 )]. From 3 and SnCl2 in THF and crystallisation from toluene, the product was the crystalline tetracyclic compound ( 5 ) as the (toluene)0.5‐solvate. Reaction of 4 with the silylene Si[(NCH2But)2C6H4‐1, 2] ( 6 ) [abbreviated as Si(NN)] in benzene and crystallisation in presence of Et2O furnished the crystalline tricyclic complex Sn[{Si(NCH2But)2C6H4‐1′, 2′}2‐{(NCH2But)2C10H6‐1, 8}] ( 7 ) as the Et2O‐solvate. Complex 5 slowly dissociated into its factors 3 and SnCl2 in toluene, but rapidly in THF. Solutions of 7 in C6D6, C7D8 or THF‐d8, studied by multinuclear, variable temperature NMR spectroscopy, revealed the presence of an equilibrium between 8 (an isomer of 7 , in which the skeletal atoms of the eight‐membered ring were , rather than the of 7 ) and 4 + 2 Si(NN), with 8 dominant in PhMe but not in THF; additionally 8 was shown to be fluxional and solutions of 8 in C6D6 or C7D8 decomposed to give the silane Si(NN)[(NCH2But)2C10H6‐1, 8], 6 and Sn metal. The X‐ray structures of 3 , 5 and 7 are presented.  相似文献   

11.
The dimeric complex [Li(Ph2pz)(OEt2)]2 ( 1 ) and tetrameric cluster [Na(Ph2pz)(thf)]4 ( 2 ) were prepared by treatment of alkali‐metal reagents (nBuLi and Na{N(SiMe3)2}, respectively) with 3,5‐diphenylpyrazole (Ph2pzH) in Et2O ( 1 ) or THF ( 2 ). The polymer [Na(tBu2pz)]n ( 3 ) was obtained from reaction at elevated temperature in a sealed tube between Na metal and 3,5‐di‐tert‐butylpyrazole (tBu2pzH). The complex [Na4(tBu2pz)2(thf)3(obds)]2 ( 4 ; obds=(OSiMe2)2O) was obtained as a minor product from prolonged treatment of tBu2pzH with elemental sodium in a silicone‐greased flask. All four alkali‐metal pyrazolato complexes were characterized by IR and 1H NMR spectroscopy and X‐ray crystallography.The Li dimer 1 displays μ‐η21 lithium–pyrazolato binding, in which both lithium atoms are four‐coordinate. Room‐ and variable‐temperature NMR studies (1H, 13C, and 7Li) of 1 suggest similar behavior in solution, with peaks coalescing at low temperatures. Complexes 2 and 4 display distorted cubane structures. In 2 , all the sodium atoms are five‐coordinate, whereas 4 contains two sodium/pyrazolate/thf clusters (4:2:3 ratio) bridged by two obds2? units, as well as two four‐coordinate and two five‐coordinate sodium atoms. Compound 3 is composed of two independent chains with the unusual coordination modes μ3‐η522, μ3‐η521, and μ3‐η421, with five‐, six‐, and seven‐coordinate sodium atoms. Two oxo‐centered M8 cage complexes [(tBu2pz)6Li8O] ( 5 ) and [(tBu2pz)6Na8O] ( 6 ) were obtained as by‐products from attempted preparation of [Li(tBu2pz)] and [Na(tBu2pz)], respectively, and their structures were determined.  相似文献   

12.
Four new macrocyclic dinuclear dibutyltin(IV) dithiocarbamate complexes of the type [Bu2Sn(dtc)]2, where dtc = hexane‐1,6‐diylbis(4‐fluorobenzyldithiocarbamate) anion ( 1 ), hexane‐1,6‐diylbis(4‐chlorobenzyldithiocarbamate) anion ( 2 ), hexane‐1,6‐diylbis(furfuryldithiocarbamate) anion ( 3 ) and hexane‐1,6‐diylbis(pyrrole‐2‐ylmethyldithiocarbamate) anion ( 4 ), have been prepared. The dithiocarbamate ligands efficiently self‐assemble with Bu2Sn(IV) to form bimetallic 26‐membered macrocycles. All the complexes have been characterized using elemental analysis, infrared and NMR (1H and 13C) spectroscopies and X‐ray crystallography. Single‐crystal X‐ray diffraction analysis of all the complexes confirms the formation of the dinuclear metallomacrocycles in which dithiocarbamate ligands are asymmetrically bound to the tin atoms. The coordination sphere around the tin atom in 1 – 4 can be described as a skew trapezoidal bipyramid. The dimensions of the cavity of the macrocycles of 1 – 4 are ca 8.0 × 9.0 Å2. Complexes 1 – 4 were evaluated for their in vitro anticancer activity against MCF‐7 and HL‐60 cells. Complexes 1 and 2 are more active against MCF‐7 and HL‐60. Thermal decomposition of 1 and 4 yielded tin sulfides. They were characterized using powder X‐ray diffraction (PXRD), high‐resolution transmission electron microscopy and UV diffuse reflectance and energy‐dispersive X‐ray spectroscopies. PXRD studies reveal that the as‐prepared tin sulfides are composed of orthorhombic phase of SnS.  相似文献   

13.
A series of four C,N‐chelated diorganotin(IV) compounds, namely (LCN)2Sn(OCH2CH2O) ( 1 ), [LCNBuSn(OCH2CH2O)]2 ( 2 ), (LCN)2Sn(1,2‐(O)2‐3,5‐tBu2C6H2) ( 3 ) and [LCNBuSn(1,2‐(O)2‐3,5‐tBu2C6H2)]2 ( 4 ) (LCN = 2‐(Me2NCH2)C6H4), one zinc species, namely LNOZnEt ( 5 ) (LNO = [2‐(MeO)C6H4]NC(Me)?C(H)C(Me)?O), and one magnesium complex, namely [LNNMg]6 ( 6 ), (LNN = [2‐(Me2NCH2)C6H4]N), were used as catalysts for the synthesis of poly(ethylene terephthalate) (PET) from dimethyl terephthalate and ethylene glycol. Prepared PET samples were primarily characterized using the size exclusion chromatography technique. The highest number‐average molar mass of prepared PET samples reached 10.7 kg mol?1. Novel dimeric compound 2 was structurally characterized using both multinuclear NMR spectroscopy and X‐ray diffraction analysis. In addition, an alternative synthesis of 1 is described. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
We report here the synthesis of new C,N‐chelated chlorostannylenes and germylenes L3MCl (M=Sn( 1 ), Ge ( 2 )) and L4MCl (M=Sn( 3 ), Ge ( 4 )) containing sterically demanding C,N‐chelating ligands L3, 4 (L3=[2,4‐di‐tBu‐6‐(Et2NCH2)C6H2]?; L4=[2,4‐di‐tBu‐6‐{(C6H3‐2′,6′‐iPr2)N=CH}C6H2]?). Reductions of 1 – 4 yielded three‐coordinate C,N‐chelated distannynes and digermynes [L3, 4M ]2 for the first time ( 5 : L3, M=Sn, 6 : L3, M=Ge, 7 : L4, M=Sn, 8 : L4, M=Ge). For comparison, the four‐coordinate distannyne [L5Sn]2 ( 10 ) stabilized by N,C,N‐chelate L5 (L5=[2,6‐{(C6H3‐2′,6′‐Me2)N?CH}2C6H3]?) was prepared by the reduction of chlorostannylene L5SnCl ( 9 ). Hence, we highlight the role of donor‐driven stabilization of tetrynes. Compounds 1 – 10 were characterized by means of elemental analysis, NMR spectroscopy, and in the case of 1 , 2 , 5 – 7 , and 10 , also by single‐crystal X‐ray diffraction analysis. The bonding situation in either three‐ or four‐coordinate distannynes 5 , 7 , and 10 was evaluated by DFT calculations. DFT calculations were also used to compare the nature of the metal–metal bond in three‐coordinate C,N‐chelating distannyne [L3Sn]2 ( 5 ) and related digermyme [L3Ge]2 ( 6 ).  相似文献   

15.
Three new diorganotin(IV) complexes, [Me2Sn(L)] (2), [Bu2Sn(L)] (3), and [Ph2Sn(L)] (4) [where H2L (1) = 2-hydroxy-5-methylbenzaldehyde-N(4)-cyclohexylthiosemicarbazone] have been synthesized by reacting the corresponding diorganotin(IV) dichloride with H2L (1) in absolute methanol in the presence of potassium hydroxide. All the compounds have been characterized by CHN analyses, UV–vis, FT-IR, 1H, 13C, and 119Sn NMR spectroscopy. The molecular structures of H2L (1) and 2 have been confirmed by single crystal X-ray diffraction analysis. H2L (1) is found to be in the thiol tautomeric form. The X-ray structure of 2 showed that H2L is a tridentate ligand and binds to the tin(IV) atom via the phenolic oxygen, azomethine nitrogen, and thiolate sulfur. Complex 2 has a triclinic structure and the coordination geometry of tin(IV) is distorted trigonal bipyramidal. The sulfur and oxygen are in axial positions while the azomethine nitrogen of 1 and two methyl groups occupy the equatorial positions. The C-Sn-C angles determined from 1J(119Sn, 13C) for 2, 3, and 4 are 124.35°, 123.11°, and 123.82°, respectively. The values of δ(119Sn) for 2, 3, and 4 are ?153.4, ?180.59, and ?158.3 ppm, respectively, indicating five-coordinate tin(IV). From NMR data a distorted trigonal-bipyramidal configuration at each tin is proposed.  相似文献   

16.
Some five- and six-coordinated di and tri-n-butyl tin(IV) semi- and thio-semi carbazates have been synthesized. The characterization of these complexes, by IR, NMR (1H, 13C, 119Sn), 119Sn), 119Sn Mössbauer and Mass spectroscopies along with X-ray diffraction, reveals that complexes of biionic ligands of the type Bu2Sn L″ are five-coordinated having trigonal bipyramidal geometry. However, complexes of monoionic ligands of the type Bu2SnL′2 are six-coordinated in a distorted cis-octahedral geometry and Bu3SnL′ are five-coordinated with a trigonal bipyramidal structure. X-ray structural studies on the compound Bu2Sn(O.C6H4.CH:N.N.CS.NH2), show that it crystallizes in a monoclinic lattice with a = 16.90 Å, b = 9.71 Å, c = 8.60 Å, and β = 103°45′.  相似文献   

17.
Two series of organotin(IV) complexes with Sn–S bonds on the base of 2,6‐di‐tert‐butyl‐4‐mercaptophenol ( L 1 SH ) of formulae Me2Sn(L1S)2 ( 1 ); Et2Sn(L1S)2 ( 2 ); Bu2Sn(L1S)2 ( 3 ); Ph 2 Sn(L1S)2 ( 4 ); (L1)2Sn(L1S)2 ( 5 ); Me3Sn(L1S) ( 6 ); Ph3Sn(L1S) ( 7 ) (L1 = 3,5‐di‐tert‐butyl‐4‐hydroxyphenyl), together with the new ones [Me3SnCl(L2)] ( 8 ), [Me2SnCl2(L2)2] ( 9 ) ( L 2  = 2‐(N‐3,5‐di‐tert‐butyl‐4‐hydroxyphenyl)‐iminomethylphenol) were used to study their antioxidant and cytotoxic activity. Novel complexes 8 , 9 of MenSnCl4 ? n (n = 3, 2) with Schiff base were synthesized and characterized by 1H, 13C NMR, IR and elemental analysis. The crystal structures of compounds 8 and 9 were determined by X‐ray diffraction analysis. The distorted tetrahedral geometry around the Sn center in the monocrystals of 8 was revealed, the Schiff base is coordinated to the tin(IV) atom by electrostatic interaction and formation of short contact Sn–O 2.805 Å. In the case of complex 9 the distorted octahedron coordination of Sn atom is formed. The antioxidant activity of compounds as radical scavengers and reducing agents was proved spectrophotometrically in tests with stable radical DPPH, reduction of Cu2+ (CUPRAC method) and interaction with superoxide radical‐anion. Moreover, compounds have been screened for in vitro cytotoxicity on eight human cancer cell lines. A high activity against all cell lines with IC50 values 60–160 nM was determined for the triphenyltin complex 7 , while the introduction of Schiff base decreased the cytotoxicity of the complexes. The influence on mitochondrial potential and mitochondrial permeability for the compounds 8 and 9 has been studied. It is shown that studied complexes depolarize the mitochondria but don't influence the calcium‐induced mitochondrial permeability transition.  相似文献   

18.
A series of dibutylbis{5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoato}tin(IV) complexes, Bu2Sn(LH)2, have been prepared and characterized by 1H, 13C, 119Sn NMR and ESI mass spectrometry in solution. The structures of the complexes Bu2Sn(L1H)2 (1), Bu2Sn(L3H)2 (3), Bu2Sn(L4H)2 (4), and Bu2Sn(L6H)2 (6) (L = 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoate: aryl = phenyl (L1H), 3-methylphenyl (L3H), 4-methylphenyl (L4H) and 4-bromophenyl (L6H)) were determined by X-ray crystallography and 117Sn CP-MAS NMR spectroscopy in the solid state. In general, the complexes were found to adopt a skew-trapezoidal bipyramidal arrangement around the tin atom. In addition, there are weak bridging intermolecular Sn?O contacts in complexes 1 and 3, but not in 4 and 6, where one of the hydroxy oxygen atoms from a neighboring molecule coordinates weakly with the Sn atom, thereby completing a seventh coordination site in the extended Sn coordination sphere. The Sn?O distance is 3.080(2) and 3.439(2) Å in 1 and 3, respectively, which are significantly shorter than the sum of the van der Waals radii of the Sn and O atoms (∼3.8 Å). In 1, this Sn?O interaction links the molecules into polymeric chains. In 3, these interactions link pairs of molecules into head-to-head dimeric units. The in vitro cytotoxicity of compound 2 indicates better results than cisplatin and etoposide against seven well characterized human tumor cell lines.  相似文献   

19.
In this paper, the syntheses of antimony and nitrogen containing interpnictogen compounds are described. Using tBu2SbCl as reagent, a tert‐butyl‐substituted stibano amine tBu2SbN(H)tBu ( 1 ), an isopropyl‐substituted interpnictogen tBu2SbN(H)iPr ( 2 ), and a primary stibano amine tBu2SbNH2 ( 3 ) are obtained. Condensation of compound 3 leads to compound (tBu2Sb)2NH ( 4 ) with elimination of ammonia. All compounds were characterized by 1H, 13C, 15N NMR spectroscopy, mass spectrometry, and IR spectroscopy. These interpnictogens represent a new class of single‐source precursors for MOVPE process. The primary amine 3 reacts with AlEt3 and GaEt3 to form previously unknown stibane‐substituted [tBu2SbN(H)MEt2]2 ring compounds [M = Al ( 5 ), M = Ga ( 6 )], which were characterized by different spectroscopic methods. Moreover, compounds 4 and 6 could be analyzed by X‐ray diffraction.  相似文献   

20.
Abstract

Six organotin(IV) complexes of type Me2SnL2, Bu2SnL2, and Ph3SnL [where L = indole-3-butyric acid (1, 2 and 3) or indole-3-propionic acid (4, 5 and 6)] have been synthesized by the reactions of the corresponding diorganotin(IV) oxide and triphenyltin(IV) hydroxide with respective indole-3-butyric acid (IBH) or indole-3-propionic acid (IPH) in the desired molar ratios of 1:2/1:1. All of the compounds have been characterized by elemental analysis, IR, 1H NMR, 13C NMR, and 119Sn NMR spectroscopy. Thermal studies of all synthesized complexes have been carried out using thermogravimetry (TG) technique under a nitrogen atmosphere. The thermal decompositions for compounds Me2SnL2 and Bu2SnL2 occurred in two steps, whereas in compounds Ph3SnL, it exhibited as three steps decomposition and resulted into the formation of pure SnO2. The complexes were also screened against three gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, and Micrococcus luteus) and three gram-negative (Escherichia coli, Pseudomonas aeruginosa, and Enterobacter aerogenes) bacteria using minimum inhibition concentration (MIC) method, and all of these complexes showed significant antibacterial activity.

[Supplementary materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements for the following free supplemental files: Additional text, tables, and figures.]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号