首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
A new type of electron ionization LC‐MS with supersonic molecular beams (EI‐LC‐MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary. Consequently, while the pneumatic spray is formed and vaporized at above atmospheric pressure the supersonic nozzle backing pressure is about 0.15 Bar for the formation of supersonic molecular beams with vibrationally cold sample molecules without cluster formation with the solvent vapor. The sample compounds are ionized in a fly‐though EI ion source as vibrationally cold molecules in the SMB, resulting in ‘Cold EI’ (EI of vibrationally cold molecules) mass spectra that exhibit the standard EI fragments combined with enhanced molecular ions. We evaluated the EI‐LC‐MS with SMB system and demonstrated its effectiveness in NIST library sample identification which is complemented with the availability of enhanced molecular ions. The EI‐LC‐MS with SMB system is characterized by linear response of five orders of magnitude and uniform compound independent response including for non‐polar compounds. This feature improves sample quantitation that can be approximated without compound specific calibration. Cold EI, like EI, is free from ion suppression and/or enhancement effects (that plague ESI and/or APCI) which facilitate faster LC separation because full separation is not essential. The absence of ion suppression effects enables the exploration of fast flow injection MS‐MS as an alternative to lengthy LC‐MS analysis. These features are demonstrated in a few examples, and the analysis of the main ingredients of Cannabis on a few Cannabis flower extracts is demonstrated. Finally, the advantages of EI‐LC‐MS with SMB are listed and discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Electron ionization (EI) mass spectra of 46 compounds from several different compound classes were measured. Their molecular ion abundances were compared as obtained with 70‐eV EI, with low eV EI (such as 14 eV), and with EI mass spectra of vibrationally cold molecules in supersonic molecular beams (Cold EI). We further compared these mass spectra in their National Institute of Standards and Technology (NIST) library identification probabilities. We found that
  1. Low eV EI is not a soft ionization method, and it has little or no influence on the molecular ion relative abundances for large molecules and those with weak or no molecular ions.
  2. Low eV EI for compounds with abundant or dominant molecular ions in their 70 eV mass spectra results in the reduction of low mass fragment ions abundances thereby reducing their NIST library identification probabilities thus rarely justifies its use in real‐world applications.
  3. Cold EI significantly enhances the relative abundance of the molecular ions particularly for large compounds; yet, it retains the low mass fragment ions; hence, Cold EI mass spectra can be effectively identified by the NIST library.
  4. Different standard EI ion sources provide different 70 eV EI mass spectra. Among the Agilent technologies ion sources, the “Extractor” exhibits relatively abundant molecular ions compared with the “Inert” ion source, while the “High efficiency source” (HES) provides mass spectra with depleted molecular ions compared with the “Inert” ion source or NIST library mass spectra.
These conclusions are demonstrated and supported by experimental data in nine figures and two tables.  相似文献   

3.
The HPLC‐DAD and GC/MS methods were successfully used for the identification and characterization of the impurities in an agrochemical insecticide, bifenthrin technical. Three impurities ranging from 0.175%–0.541% were detected by the HPLC‐DAD method. The LC/MS technique with ESI or APCI source failed to detect the impurities detected by HPLC‐DAD, due to lack of ionization in ESI or APCI. The three impurities were enriched by prep‐HPLC, and then their structures were elucidated based on the GC/EIMS and CIMS data. The EI mass spectra of bifenthrin and its impurities displayed molecular ion and provided structure indicative fragment ions; the CIMS data further confirmed their molecular weight. The identity of the impurity 1 was further confirmed by the synthesis of the authentic sample followed by NMR and GC/MS data.  相似文献   

4.
张素艳  耿昱  郭寅龙  王浩  吕龙 《中国化学》2005,23(7):870-874
High performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS) have been utilized to analyze the synthesized 2-(2-arylaminomethylphenoxy)pyrimidine derivatives, which are a new kind of environmentally benign herbicides and have passed the temporary pesticide registration. The identification of main product and impurities has been achieved according to the UV and mass spectra. Moreover, one impurity, introduced by the raw material in the last step of the synthetic route, was identified by GC-MS analysis. It can be concluded that the combination of chromatography and mass spectrometry, including LC-MS and GC-MS, provided a vital tool of the pesticide science.  相似文献   

5.
Gas chromatography-mass spectrometry (GC-MS) with supersonic molecular beams (SMBs) (also named Supersonic GC-MS) is based on GC and MS interface with SMBs and on the electron ionization (EI) of vibrationally cold analytes in the SMBs (cold EI) in a fly-through ion source. This ion source is inherently inert and further characterized by fast response and vacuum background filtration capability. The same ion source offers three modes of ionization including cold EI, classical EI and cluster chemical ionization (CI). Cold EI, as a main mode, provides enhanced molecular ions combined with an effective library sample identification, which is supplemented and complemented by a powerful isotope abundance analysis method and software. The range of low-volatility and thermally labile compounds amenable for analysis is significantly increased owing to the use of the contact-free, fly-through ion source and the ability to lower sample elution temperatures through the use of high column carrier gas flow rates. Effective, fast GC-MS is enabled particularly owing to the possible use of high column flow rates and improved system selectivity in view of the enhancement of the molecular ion. This fast GC-MS with SMB can be further improved via the added selectivity of MS-MS, which by itself benefits from the enhancement of the molecular ion, the most suitable parent ion for MS-MS. Supersonic GC-MS is characterized by low limits of detection (LOD), and its sensitivity is superior to that of standard GC-MS, particularly for samples that are hard for analysis. The GC separation of the Supersonic GC-MS can be improved with pulsed flow modulation (PFM) GC x GC-MS. Electron ionization LC-MS with SMB can also be combined with the Supersonic GC-MS, with fast and easy switching between these two modes of operation.  相似文献   

6.
The use of gas chromatography coupled to high‐resolution magnetic sector mass spectrometers (GC‐HRMS) is well established for dioxin and furan analysis. However, the use of gas chromatography coupled to triple quadrupole (MS/MS) and time of flight (TOF) mass spectrometers with atmospheric pressure ionization (API) and traditional electron ionization (EI) for dioxin and furan analysis is emerging as a viable alternative to GC‐HRMS screening. These instruments offer greater versatility in the lab for a wider range of compound identification and quantification as well as improved ease of operation. The instruments utilized in this study included 2 API‐MS/MS, 1 traditional EI‐MS/MS, an API‐quadrupole time of flight mass spectrometer (API‐QTOF), and a EI‐high‐resolution TOF (EI‐HRTOF). This study compared these 5 instruments to a GC‐HRMS using method detection limit (MDLs) samples for dioxin and furan analysis. Each instrument demonstrated acceptable MDL values for the 17 chlorinated dioxin and furans studied. The API‐MS/MS instruments provide the greatest overall improvement in MDL value over the GC‐HRMS with a 1.5 to 2‐fold improvement. The API‐QTOF and EI‐TOF demonstrate slight increases in MDL value as compared with the GC‐HRMS with a 1.5‐fold increase. The 5 instruments studied all demonstrate acceptable MDL values with no MDL for a single congener greater than 5 times that for the GC‐HRMS. All 5 instruments offer a viable alternative to GC‐HRMS for the analysis of dioxins and furans and should be considered when developing new validated methodologies.  相似文献   

7.
We report the observation of a new physical phenomenon of the addition of 2 hydrogen atoms to molecular ions thus forming [M + 2H]+ ions. We demonstrate such second hydrogen atom abstraction onto the molecular ions of pentaerythritol and trinitrotoluene (TNT). We used both gas chromatography mass spectrometry (GC‐MS) with supersonic molecular beam (SMB) with methanol added into its make‐up gas and electron ionization (EI) liquid chromatography mass spectrometry (LC‐MS) with SMB with methanol as the LC solvent. We found that the formation of methanol clusters resulted upon EI in the formation of dominant protonated pentaerythritol ion at m/z = 137 plus about 70% relative abundance of pentaerythritol molecular ion with 2 additional hydrogen atoms at m/z = 138 which is well above the 5.7% natural C13 isotope abundance of protonated pentaerythritol. Similarly, we found an abundant protonated TNT ion at m/z = 228 and a similar abundance of TNT molecular ion with 2 additional hydrogen atoms at m/z = 229. Upon the use of deuterated methanol (CD3OD) as the solvent, we observed an abundant m/z = 231 (M + 2D)+ of TNT with 2 deuterium atoms. We found such abundant second hydrogen atom abstraction with butylglycolate and at low abundances in dioctylphthalate, Vitamin K3, phenazine, and RDX. At this time, we are unable to report the magnitude and frequency of occurrence of this phenomenon in standard electrospray LC‐MS. This observation could have important implications on the provision of elemental formula from mass spectra that are involved with protonated molecules. Accordingly, while accurate mass measurements can serve for the generation of elemental formula, their further support and improvement via isotope abundance analysis are questionable. Consequently, if a given compound can be analyzed by both GC‐MS and LC‐MS, its GC‐MS analysis can be superior for the provision of accurate elemental formulae if its EI mass spectrum exhibits abundant molecular ions such as with GC‐MS with SMB (also known as cold EI).  相似文献   

8.
A new analytical technique for the structural elucidation of four representative phenidate analogues possessing a secondary amine residue, which leads to a major/single amine‐representative fragment/product ion at m/z 84 both in their GC‐EI‐MS and LC‐ESI‐MS/MS spectra, making their identification ambiguous, was developed. The method is based on “in vial” chemical derivatization with isobutyl chloroformate in both aqueous and organic solutions, followed by liquid chromatography‐electrospray ionization mass spectrometry (LC‐ESI‐MS/MS). The resulting carbamate derivatives promote rich fragmentation patterns with full coverage of all substructures of the molecule, enabling detailed structural elucidation and unambiguous identification of the original compounds at low ng/mL levels.  相似文献   

9.
A major benefit of gas chromatography/mass spectrometry (GC/MS) with a supersonic molecular beam (SMB) interface and its fly-through ion source is the ability to obtain electron ionization of vibrationally cold molecules (cold EI), which show enhanced molecular ions. However, GC/MS with an SMB also has the flexibility to perform 'classical EI' mode of operation which provides mass spectra to mimic those in commercial 70 eV electron ionization MS libraries. Classical EI in SMB is obtained through simple reduction of the helium make-up gas flow rate, which reduces the SMB cooling efficiency; hence the vibrational temperatures of the molecules are similar to those in traditional EI ion sources. In classical EI-SMB mode, the relative abundance of the molecular ion can be tuned and, as a result, excellent identification probabilities and very good matching factors to the NIST MS library are obtained. Classical EI-SMB with the fly-through dual cage ion source has analyte sensitivity similar to that of the standard EI ion source of a basic GC/MS system. The fly-through EI ion source in combination with the SMB interface can serve for cold EI, classical EI-SMB, and cluster chemical ionization (CCI) modes of operation, all easily exchangeable through a simple and quick change (not involving hardware). Furthermore, the fly-through ion source eliminates sample scattering from the walls of the ion source, and thus it offers full sample inertness, tailing-free operation, and no ion-molecule reaction interferences. It is also robust and enables increased column flow rate capability without affecting the sensitivity.  相似文献   

10.
With advancements in ionization methods and instrumentation, liquid chromatography/mass spectrometry (LC/MS) has become a powerful technology for the characterization of small molecules and proteins. This article will illustrate the role of LC/MS analysis in drug discovery process. Examples will be given on high-throughput analysis, structural analysis of trace level impurities in drug substances, identification of metabolites, and characterization of therapeutic protein products for process improvement. Some unique MS techniques will also be discussed to demonstrate their effectiveness in facilitating structural identifications.  相似文献   

11.
《Electrophoresis》2017,38(6):886-896
This paper describes an analytical approach, based on LC‐diode array detector‐MS/MS (LC‐DAD‐MS/MS), for characterizing the fat‐soluble micronutrient fraction in rainbow trout (Oncorhynchus mykiss ). Two different procedures were applied to isolate the analytes from liver and muscle tissue: overnight cold saponification to hydrolyze bound forms and to simplify the analysis; matrix solid‐phase dispersion to avoid artifacts and to maintain unaltered the naturally occurring forms. Analytes were separated on a C30 analytical column by using a nonaqueous reversed mobile phase compatible with the atmospheric pressure chemical ionization. Compared to other works, the most relevant advantage of the here illustrated method is the large amount of information obtained with few analytical steps: nine fat‐soluble vitamins (3,4‐dehydroretinol, retinol, cholecalciferol, ergocalciferol, α‐tocopherol, γ‐tocopherol, δ‐tocopherol, phylloquinone, and menaquinone‐4) and eight carotenoids (all‐trans ‐lutein, all‐trans ‐astaxanthin, all‐trans ‐zeaxanthin, all‐trans ‐β‐cryptoxanthin, all‐trans ‐canthaxanthin, all‐trans ‐ζ‐carotene, all‐trans ‐β‐carotene, and all‐trans ‐γ‐carotene) were quantified after the method validation, while other untargeted carotenoids were tentatively identified by exploiting the identification power of the LC‐DAD‐MS/MS hyphenation.  相似文献   

12.
The continuous development in analytical instrumentation has brought the newly developed Orbitrap‐based gas chromatography / mass spectrometry (GC/MS) instrument into the forefront for the analysis of complex mixtures such as crude oil. Traditional instrumentation usually requires a choice to be made between mass resolving power or an efficient chromatographic separation, which ideally enables the distinction of structural isomers that is not possible by mass spectrometry alone. Now, these features can be combined, thus enabling a deeper understanding of the constituents of volatile samples on a molecular level. Although electron ionization is the most popular ionization method employed in GC/MS analysis, the need for softer ionization methods has led to the utilization of atmospheric pressure ionization sources. The last arrival to this family is the atmospheric pressure photoionization (APPI), which was originally developed for liquid chromatography / mass spectrometry (LC/MS). With a newly developed commercial GC‐APPI interface, it is possible to extend the characterization of unknown compounds. Here, first results about the capabilities of the GC/MS instrument under high or low energy EI or APPI are reported on a volatile gas condensate. The use of different ionization energies helps matching the low abundant molecular ions to the structurally important fragment ions. A broad range of compounds from polar to medium polar were successfully detected and complementary information regarding the analyte was obtained.  相似文献   

13.
Metabolism studies play an important role at various stages of drug discovery and development. Liquid chromatography combined with mass spectrometry (LC/MS) has become a most powerful and widely used analytical tool for identifying drug metabolites. The suitability of different types of mass spectrometers for metabolite profiling differs widely, and therefore, the data quality and reliability of the results also depend on which instrumentation is used. As one of the latest LC/MS instrumentation designs, hybrid ion trap/time‐of‐flight MS coupled with LC (LC‐IT‐TOF‐MS) has successfully integrated ease of operation, compatibility with LC flow rates and data‐dependent MSn with high mass accuracy and mass resolving power. The MSn and accurate mass capabilities are routinely utilized to rapidly confirm the identification of expected metabolites or to elucidate the structures of uncommon or unexpected metabolites. These features make the LC‐IT‐TOF‐MS a very powerful analytical tool for metabolite identification. This paper begins with a brief introduction to some basic principles and main properties of a hybrid IT‐TOF instrument. Then, a general workflow for metabolite profiling using LC‐IT‐TOF‐MS, starting from sample collection and preparation to final identification of the metabolite structures, is discussed in detail. The data extraction and mining techniques to find and confirm metabolites are discussed and illustrated with some examples. This paper is directed to readers with no prior experience with LC‐IT‐TOF‐MS and will provide a broad understanding of the development and utility of this instrument for drug metabolism studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Peptide acetylation and dimethylation have been widely used to derivatize primary amino groups (peptide N‐termini and the ε‐amino group of lysines) for chemical isotope labeling of quantitative proteomics or for affinity tag labeling for selection and enrichment of labeled peptides. However, peptide acetylation results in signal suppression during electrospray ionization (ESI) due to charge neutralization. In contrast, dimethylated peptides show increased ionization efficiency after derivatization, since dimethylation increases hydrophobicity and maintains a positive charge on the peptide under common LC conditions. In this study, we quantitatively compared the ESI efficiencies of acetylated and dimethylated model peptides and tryptic peptides of BSA. Dimethylated peptides showed higher ionization efficiency than acetylated peptides for both model peptides and tryptic BSA peptides. At the proteome level, peptide dimethylation led to better protein identification than peptide acetylation when tryptic peptides of mouse brain lysate were analyzed with LC‐ESI‐MS/MS. These results demonstrate that dimethylation of tryptic peptides enhanced ESI efficiency and provided up to two‐fold improved protein identification sensitivity in comparison with acetylation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Mass spectrometry (MS) is a fundamental technique to identify compounds by their mass-to-charge ratio. It is known that MS can only detect target compounds when they are converted to ions in the gas phase. The ionization procedure is considered one of the most critical steps, and there are distinct techniques for it. One of them is electron ionization (EI), a widely used hard-ionization technique capable of generating several ions due to the excess energy employed. The existence of distinct ionization mechanisms turns EI capable of producing a fingerprint-like spectrum for each molecule. So, it is an essential technique for obtaining structural information. EI is often combined with chromatography to obtain a practical introduction of pretreated samples despite its excellent performance. EI–MS has been applied coupled with gas chromatography (GC) since the 1960s as both are very compatible. Currently, analytes of interest are more suitable for liquid chromatography (LC) analysis, so there are researchers dedicated to developing suitable interfaces for coupling LC and EI–MS. EI excels, as a reliable technique to fill the gap between GC and LC, possibly allowing them to coexist in a single instrument. In this work, the authors will present the fundamentals of EI–MS, emphasizing the development over the years, coupling with gas and LC, and future trends.  相似文献   

16.
A novel analytical technique for the structural elucidation of compounds bearing a tertiary amine side chain via “in vial” instantaneous oxidation and liquid chromatography mass spectrometry (LC‐MS) was developed. A series of lidocaine homologs and benzimidazole derivatives with a major/single amine representative base peak in both their EI‐MS and ESI‐MS/MS spectra were subjected to oxidation by a 0.1% solution of hydrogen peroxide (including several 16O/18O exchange experiments), followed by LC‐ESI‐MS/MS analysis. The N‐oxide counterparts promoted extensive fragmentation with complete coverage of all parts of the molecule, enabling detailed structural elucidation and unambiguous identification of the unoxidized analytes at low nanogram per milliliter levels.  相似文献   

17.
Gas chromatography–mass spectrometry (GC–MS) with Cold EI is based on interfacing GC and MS with supersonic molecular beams (SMBs) along with electron ionization of vibrationally cold sample compounds in SMB in a fly-through ion source (hence the name Cold EI). Cold EI improves all the central performance aspects of GC–MS, and in this paper, we focus on its improvement of signal-to-noise ratio (S/N) and limits of detection (LODs). We found that the harder the compound for analysis with standard EI, the greater the Cold EI gain in S/N and LOD. The lower LOD and higher S/N of Cold EI emerge from a few reasons: (a) similar ionization yield as standard EI, (b) enhanced abundance of molecular ions, (c) elimination of vacuum background noise, (d) elimination of ion source-related peak tailing and degradation, (e) ability to lower the elution temperatures via the use of high column flow rates, and (f) greater range of thermally labile and low-volatility compounds that can be analyzed. We demonstrate the superior S/N and lower LOD of Cold EI versus standard EI in a range of compounds, from the simple-to-analyze octafluoronaphthalene all the way to reserpine and an organo-metallic compound that cannot be analyzed by standard EI. These compounds include methyl stearate, cholesterol, n-C32H66, large polycyclic aromatic hydrocarbons, dioctyl phthalates, diundecyl phthalate, pentachlorophenol, benzidine, lambda-cyhalothrin, and methidathion. The significantly lower Cold EI LODs that can be over 1000 times better than in standard EI further result in far superior response linearity and greater measurement dynamic range.  相似文献   

18.
19.
The chromatograms obtained from the gas chromatography‐electron ionization mass spectrometric (GC‐EI‐MS) analysis of extracts containing G‐nerve agents in the presence of diesel, gasoline, etc., are dominated by hydrocarbon backgrounds that “mask” the G‐nerve agents, leading to severe difficulties in identification. This paper presents a practical solution for this challenge by transferring the G‐nerve agents from the organic phase into the aqueous phase using liquid‐liquid extraction (LLE), followed by derivatization with 2‐[(dimethylamino)methyl]phenol (2‐DMAMP), allowing ultrasensitive LC‐ESI‐MS/MS analysis of the G‐derivatives. The proposed approach enables rapid identification of trace amounts of G‐nerve agents with limits of identification (LOIs) at the pg/mL scale.  相似文献   

20.
The profiling and identification of impurities in raw pharmaceuticals or finished drug product is an essential part of the pharmaceutical manufacturing process. Critical to this process is the ability to confirm known, expected impurities and identify new impurities. LC coupled to electrospray MS is a powerful tool that has been employed for the identification of impurities, natural products, drug metabolites, and proteins. In this study, we show how sub 2 microm porous particle LC has been coupled to hybrid quadrupole orthogonal TOF mass spectrometer to profile and identify the impurities of the common cholesterol lowering drug simvastatin. The hybrid quadrupole TOF mass spectrometer was operated by alternating the collision cell energies to allow for the rapid, facile conformation of the identity of impurities. Using this process it was possible to identify all of the common impurities of simvastatin in a single 10 min run. During the analysis a new impurity of simvastatin was detected and identified as the saturated ring form of simvastatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号