首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
研究了Bi4(Ti1/3Sn2/3)3O12掺杂对钛酸钡基陶瓷微观结构和介电性能影响。结果表明,掺杂Bi4(Ti1/3Sn2/3)3O12后钛酸钡基陶瓷晶粒明显长大,同时烧结温度可由1 280℃降低至1 180℃。系统的介电性能和Bi4(Ti1/3Sn2/3)3O12的掺杂量有密切关系。当Bi4(Ti1/3Sn2/3)3O12的掺杂量从0.5mol%增加到2mol%,体系的居里峰被明显压低和展宽,当掺杂量为2mol%时居里峰变得不明显。当Bi4(Ti1/3Sn2/3)3O12的掺杂量从0.5mol%增加到2mol%,系统的居里温度由131℃升高至139℃。当Bi4(Ti1/3Sn2/3)3O12的掺杂量为1mol%时,钛酸钡基陶瓷介电常数为1 930,介电常数温度变化率为5%(-55℃),13%(134℃),-8%(150℃),满足X8R标准。  相似文献   

2.
改善BiFeO3性能的有效途径,就是对其进行掺杂或与其他钙钛矿材料复合固熔。由于稀土元素与Bi的化合价相同,较容易取代Bi离子,而且Mn,Cr的掺杂又可提高BiFeO3的磁性。通过掺杂,采用溶胶-凝胶法合成了Bi1-xLaxFe0.8Mn0.2O3材料(x=0.3,0.35,0.4),用XRD测试了其晶体结构,通过原子力显微镜测试其表面形貌。通过对复合陶瓷(Bi1-xLaxFe0.8Mn0.2O3)的磁性能、介电性能和磁电耦合性能的研究,作出复合陶瓷的M-H磁滞回线。结果显示:随着La掺杂量的增加,原胞体积变小,x=0.4时,颗粒进一步细化;磁滞回线显示,随着La掺杂量的增加,剩磁逐渐增大,磁性能得到一定的改善,磁电耦合性能进一步提高,但介电性能有所减弱。  相似文献   

3.
本文采用共沉淀法合成了Ti∶Al2O3纳米粉体。利用热重/差热(TG/DTA)/X射线衍射(XRD)/红外光谱(FTIR)/扫描电镜(SEM)以及能谱(EDS)等分析方法对合成的Ti∶Al2O3纳米粉体进行了表征。结果分析表明:前驱体在1200℃下,保温1 h可以得到纯的α-Al2O3晶相;粉体的粒径均匀、分散性好,平均粒径在25~50 nm之间。  相似文献   

4.
以水热合成法为基础,制备了La2O3掺杂量为2.0%(质量分数)的W-20Cu复合粉体,并通过SEM,HRTEM,DTA/TG及XRD等手段对复合粉体的物相、形貌和微观结构进行了表征。结果表明:水热共沉淀法制备稀土La2O3掺杂W-Cu复合粉时,对应前驱溶液的最佳p H为5.5。与不加稀土相比,水热产物分解温度降低,470℃煅烧2 h后,La与W形成复合氧化物La2W3O12,且分解形成的WO3相依附La(OH)3生长,其结晶性提高。在推杆式还原炉850℃于H2介质中还原2 h后,煅烧粉完全被转化为W,Cu和La2O3,HRTEM表征发现La2O3吸附在W和Cu颗粒的表面,阻止晶粒的长大,有望提高还原粉体的烧结性能。  相似文献   

5.
以硝酸钙、硝酸镁、正硅酸乙酯为先驱体, 利用溶胶-凝胶法合成(Ca1-xMgx)SiO3(x=0.1、0.2、0.3、0.4、0.5)陶瓷粉体, 研究了Mg2+取代Ca2+对陶瓷物相组成、烧结特性以及微波介电性能的影响规律. 结果表明, Mg2+在CaSiO3中的最大固溶度不超过0.2;随着Mg2+对Ca2+取代量的增加, 陶瓷在烧结后的主晶相出现从CaSiO3相向CaMgSi2O6相的转变,陶瓷的烧结特性及介电性能出现先增加后下降的趋势;当x=0.3 时, 陶瓷体中CaSiO3相与CaMgSi2O6相共存, 克服了单相CaSiO3或CaMgSi2O6易成片长大的缺点,有效减少了陶瓷中残留的气孔, 提高烧结体致密性. (Ca0.7Mg0.3)SiO3在1320 益烧结后介电常数为6.62, 品质因数为36962 GHz.  相似文献   

6.
采用溶胶-凝胶法合成SiO2含量小于50×10-6的Ce0.8Nd0.2O1.9(NDC)陶瓷粉体,并将少量Fe2O3加入到NDC体系中,讨论Fe2O3的掺杂对其微观结构及电性能的影响。通过X射线衍射(XRD)等手段对氧化物进行结构表征,交流阻抗谱(AC)测试电性能。研究表明,Fe2O3的掺杂显著提高NDC陶瓷材料的致密度;相比于NDC而言,加入Fe2O3后材料的晶界电导率提高约12倍,总电导率提高约6倍。  相似文献   

7.
用高温固相反应法制备了Ba0.9La0.1Ce0.9Nd0.1O3-α质子导电性陶瓷,粉末X-射线衍射(XRD)分析表明,该陶瓷为单一钙钛矿型斜方晶结构。在500~900℃温度范围内,分别用气体浓差电池方法和交流阻抗谱技术研究了材料在不同气体气氛中的离子导电性,并与Ba0.9Ca0.1Ce0.9Nd0.1O3-α材料的离子导电性进行了比较。结果表明,在500~900℃温度范围内、湿润氢气中,Ba0.9La0.1Ce0.9Nd0.1O3-α材料的质子迁移数为1,是一个纯的质子导体。在干燥空气中,该材料是一个氧离子和电子空穴的混合导体,氧离子迁移数为0.295~0.081,氧离子电导率高于Ba0.9Ca0.1Ce0.9Nd0.1O3-α。在湿润空气中,该材料是一个质子、氧离子和电子空穴的混合导体,质子迁移数为0.151~0.009,氧离子迁移数为0.300~0.107,质子电导率低于Ba0.9Ca0.1Ce0.9Nd0.1O3-α材料。在氢-空气燃料电池条件下,Ba0.9La0.1Ce0.9Nd0.1O3-α材料是一个质子、氧离子和电子的混合导体,离子迁移数为0.964~0.853,离子电导率与Ba0.9Ca0.1Ce0.9Nd0.1O3-α材料相近。  相似文献   

8.
以硝酸锂、偏钒酸铵、硝酸钙、硝酸镁、正硅酸乙酯为原料,采用溶胶-凝胶法低温合成纳米CaMgSi2O6微波介质陶瓷粉体,研究了不同粒径粉体的烧结行为与微波介电性能。结果表明,通过在钙镁硅溶胶中引入锂钒烧结助剂可大大降低陶瓷粉体的晶相合成温度,干凝胶在750 ℃煅烧后可获得主晶相为CaMgSi2O6、分散性良好、粒径为78~98 nm的陶瓷粉体,可满足微型片式元器件用超薄陶瓷介质层的制备要求;该粉体在890 ℃烧结后获得致密结构的陶瓷,具有良好的微波介电性能:介电常数为7.68,品质因数为24 542 GHz,频率温度系数为-57.25×10-6-1。  相似文献   

9.
采用熔盐法合成了YVO4∶Sm3+红色发光材料. 用X射线粉末衍射对其结构进行表征, 证实样品为具有锆石结构的YVO4相; 测定了样品的激发与发射光谱; 分析了不同的掺杂浓度和烧结温度对样品发光强度的影响. 研究结果表明, 采用熔盐法合成的样品均可以产生Sm3+的特征发射, 但是与其它方法相比, 熔盐法合成样品位于647 nm处Sm3+的4G5/2-6H9/2发射明显得到加强, 从而使得样品发出明亮的红光, 而不是其它合成方法获得的橙色光. 当掺杂浓度为1%(摩尔分数)且在500 ℃下烧结5 h后, 熔盐法得到的YVO4∶Sm3+荧光粉的发光强度最大.  相似文献   

10.
红色长余辉发光材料Ca2Zn4Ti15O36∶Pr3+的合成和发光性质   总被引:4,自引:1,他引:4  
分别采用高温固相法和溶胶-凝胶法合成了新型红色长余辉发光材料Ca2Zn4Ti15O36∶Pr. 高温固相法合成Ca2Zn4Ti15O36需要在1200 ℃灼烧96 h才能形成纯物相. 热重分析曲线和X射线衍射分析结果表明 溶胶-凝胶法制得的前驱体在700 ℃灼烧12 h开始形成Ca2Zn4Ti15O36物相; 在1000 ℃灼烧24 h得到Ca2Zn4Ti15O36纯物相; 最佳反应温度为1000 ℃, 激活剂Pr3+的最佳浓度为0.6mol%, 发光强度比高温固相法增强了510%.  相似文献   

11.
采用全氧化物为原料,利用熔盐法合成了Pb1-xLaxTiO3(0.0≤x≤0.40),当x=0.45时,烧绿石相La2Ti2O7出现。计算了合成反应活化能,并在700 ℃下在NaCl-KCl体系中仅用5 min就合成了Pb0.9La0.1TiO3。Pb1-xLaxTiO3陶瓷在0.00≤x<0.25时,晶体结构为四方相,在0.25≤x≤0.40时为立方相。采用700 ℃ NaCl-KCl和900 ℃的Na2SO4-K2SO4两种熔盐体系获得了尺寸分布集中的球形颗粒,这些表明熔盐法晶体生长为扩散控制生长机理。  相似文献   

12.
Ag-modified La0.6Sr0.4MnO3 catalysts were prepared and their catalytic performance for deep oxidation of CH4 and CH3OH at low concentrations were investigated. The results showed that the La0.6Sr0.4MnO3 host catalyst with the perovskite-type nano-crystallite structure displayed considerably high catalytic activity for deep oxidation of CH4 and CH3OH at low concentrations. Ag modification to the La0.6Sr0.4MnO3 host catalyst resulted in significant enhancement of the catalyst activity, making the T95 (the reaction temperature needed for conversion of 95%of CH4 or CH3OH) lowered down to 735K (for CH4) and 421K (for CH3OH) from 813 and 465 K over the Ag-free system under the reaction conditions:0.1MPa,CH4/O2/N2=2/12/86(molar ratio),GHSV=45000 h-1 and CH3OH/O2/N2= 0.2/1.0/98.8 (molar ratio),GHSV=58000 h-1,respectively.The carbon containing product was almost CO2 and the contents of HCHO and CO in the reaction exit gas were both under GC detectable limit in both cases.
The results of spectroscopic characterization indicated that modification by proper amount of Ag-dopant did not change the perovskite structure of the La0.6Sr0.4MnO3 host catalyst as a whole. Interaction of Ag-dopant with the surface of the host catalyst,La0.6Sr0.4MnO3,was in favor of high dispersion of the Ag component at the catalyst surface and led to the oxidation of part of the Mn3+species to Mn4+,resulting in an increase of amounts of the reducible Mnn+ species and a decrease of their reduction temperature. On the other hand, this interaction led also to enhancement of adsorption ability of the catalyst toward O2 at relatively low temperature. High activity of the Ag modified La0.6Sr0.4MnO3 catalyst for CH4 and CH3OH complete oxidation was closely related to high redox-activity of the catalyst and its prominent adsorption-activation ability to O2 at relatively low temperatures.  相似文献   

13.
本文以氯化铜、氯化铟、硫脲、亚硒酸以及硒粉为原料,乙二醇及乙二胺为溶剂,采用常压溶剂热法制备了硫化铟为核硒化铜为壳(In2S3/CuSe)的核壳结构复合粉体。主要探讨了反应温度、不同反应原料以及不同表面活性剂对产物物相以及形貌的影响。通过采用X射线衍射(XRD)、扫描电镜(SEM)对产物的物相、形貌以及组成进行了表征。实验结果表明:常压溶剂热条件下可以制备得In2S3/CuSe复合粉体,其最佳反应工艺参数是:于160℃下合成In2S3粉体为核,于100℃下合成包裹在In2S3表面的CuSe粉体从而获得In2S3/CuSe核壳结构复合粉。在该工艺参数下合成产物的形貌主要由圆球状颗粒组成,粉体的粒径分布在1~2μm。此外,本文也通过添加不同种类表面活性剂对产物的形貌进行了控制。  相似文献   

14.
采用溶胶-凝胶法制备了系列Sm掺杂的Ba(0.8-3x/2)SmxSr0.2TiO3(x=0,0.001,0.003,0.006,0.008 and 0.010)粉体及陶瓷。利用X射线粉末衍射、扫描电子显微镜和精密阻抗分析表征了样品的结构和性质。X射线衍射结果表明Ba(0.8-3x/2)SmxSr0.2TiO3粉体在800℃预烧2 h后为单一的钙钛矿结构;通过对陶瓷微观形貌研究发现,Sm掺杂可以明显地抑制陶瓷晶粒生长,随着Sm掺杂量的增加,晶粒尺寸由40μm减小到2μm;居里温度随着Sm掺杂量的增加而线性降低,移动速率为10℃/mol%,室温下介电常数呈现先增加后减小的趋势,并在x=0.006时达到最大值7800。  相似文献   

15.
通过高温固相法合成了一系列Sr3La2-xGe3O12:xSm^3+(0≤x≤0.04)红色荧光粉,并对样品的形貌、元素组成、晶体结构、发光性能及热稳定性进行了探究。结果表明:样品Sr3La2Ge3O12:xSm^3+为较宽尺寸分布的颗粒,且结构中仅含有Sr、La、Ge、O、Sm等元素。样品Sr3La1.97Ge3O12:0.03Sm^3+的Rietveld结构精修图与实测XRD图完全吻合,具有六方晶系结构。漫反射测试结果显示基质Sr3La2Ge3O12的带宽为5.54 eV,属于宽带隙材料。在404 nm激发下,样品Sr3La2-xGe3O12:xSm^3+(0≤x≤0.04)的最大发射峰位于601nm处,属于Sm^3+的6H5/2→4L13/2能级跃迁。此外,样品Sr3La1.97Ge3O12:0.03Sm^3+的发光性能最佳,其CIE色坐标为(0.5321,0.4601),色纯度高达94.2%,在298-473 K范围内具有较好的热稳定性,测试温度达到423 K时发射强度仍为室温时的81.6%。  相似文献   

16.
采用溶胶-凝胶与固相反应相结合的方法制备了xNiFe2O4/(1-x)BaTiO3(x=0.1,0.2,0.3,0.4,0.5,0.6)系列复合多铁材料.X射线衍射(XRD)结果表明,复合材料中只含有钙钛矿结构的BaTiO3和尖晶石结构的NiFe2O4,说明共烧过程中两者未发生明显的化学反应,铁电相与铁磁相共存.扫描电子显微镜(SEM)观测结果表明材料内部是异质结构的,高分辨透射电子显微镜(HRTEM)观测结果进一步说明了NiFe2 O4和BaTiO3共存,并且在两种物质的接触处能够看到清晰的界面.这种由BaTiO3和NiFe2 O4组成的复合材料对外同时表现出铁电性和铁磁性.电滞回线结果表明,该复合材料具有铁电性,但存在着一定的漏电.介电频谱表明材料的介电常数随着频率的升高而下降,在低频下达到定值,并且铁磁相的含量对材料的介电性有影响.磁性能测试结果表明材料的磁性源于NiFe2O4,并且磁性随着NiFe2O4含量的增加而增强.  相似文献   

17.
Combustion catalysts La0.8Sr0.2MnO3 supported on γ-Al2O3, α-Al2O3, cordierite (2MgO•2Al2O3•5SiO2) and ZrO2 were compared. Further investigation was focused on LSM/ γ-Al2O3 catalyst. It was observed that LSM/γ-Al2O3 catalyst loaded with 20% (mass fraction) LSM (La0.8Sr0.2MnO3 or corresponding oxides), heated at 750℃ or above, perovskite-type oxides were found by XRD examination, whereas, the same catalyst loaded with 10% or less LSM, perovskite oxides were absent, calcination temperature about 750℃ is necessary for the formation of perovskite structure in LSM/γ-Al2O3 catalysts. High activity of complete oxidation of xylen will be obtained when perovskite-type oxides.
Investigation of TPR showed that neat LSM or LSM/γ-Al2O3(20%) was reduced by H2-N2 mixed gas. Two degradation processes took place. In the first, reduced temperature peak was about 350 - 450℃. If reduction ended at 400℃, perovskite structure was retained, which may be due to the reduction of Mn3+to Mn2+ on the surface of LSM only. In the second process, perovskite structure was destroied, and La2O3, Mn2O3, Mn - Sr - O oxides could be obtained, which took place in the temperature range 685 - 750℃ and ended at 800℃. This was proved by TPR experiments (Fig. 3, 5) and XRD patterns (Fig. 4)
Catalysts LSM/γ-Al2O3(10% or 20%) heated at 500℃ have only one TPR peak, i. e. lower temperature peak. This is due to the absence of perovskite-type oxides in the catalysts. However, neat LSM or LSM/γ-Al2O3(20%) heated 750℃ or above, not only the first low temperature TPR peak but also the second peak, which is contributed by the perovskite-type oxides in these catalysts appeared. Therefore, the second TPR peak, i. e. the higher temperatue peak is a characteristic peak for perovskite-type oxides in the reduced process. When LSM/ γ-Al2O3 (10%) catalys is heated at 750℃, no perovskite-type oxides were detected by XRD, and the second reduction peak was absent also in TPR process. \
The order of the second reduction peak temperature(characteristic peak of perovskite - type ox- ides) is: neat LSM(750℃)> LSM/γ-Al2O3 20% (685-698℃) -deposited LSM/γ-Al2O3 (698℃) > LSM/γ-Al2O3 15% (677 - 680℃) >(LSM/γ-AL2O3 10% 620 - 630℃, for Mn - Al - O medium oxides on surface). It is correleted with the increasing of the effect of support sequentially.
When LSM/γ-Al2O3 catalysts were heated at 900℃, more stable phase, spinel MnAl2O4 appeared, which could be proved by TPR of model catalyst MnAl2O4/γ-Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号