首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 168 毫秒
1.
1.制备一些新型的硫代膦酰氯,其中R'为C6H5,R"为C2H5O,C2H5,(CH3)2N,(C2H5)2N,C2H5S等。  相似文献   

2.
采用AM1和PM3两种半经验方法,对D5d对称性的C40及C40H2所有可能异构体的几何构型进行了非限制对称性全优化,得到51种稳定异构体,在此基础上研究了氢的加成反应规律及本体C40和最稳定及最不稳定C40H2异构体的红外光谱,讨论了影响C40(D5d)氢加成异构体稳定性及加成位置选择性的三种主要因素:(1)C40本体几何结构;(2)共轭效应;(3)电荷分布影响.  相似文献   

3.
赵可清  高彩艳  胡平  汪必琴  李权 《化学学报》2006,64(10):1051-1062
合成了三个系列, 共二十四个有两种不同软链的对称和非对称苯并菲盘状液晶化合物, C18H6(OR)3- (OCH2COOEt)3, C18H6(OR)3(OCH2COOBu)3, C18H6(OR)3(OCH2CONHBu)3, 其中R=C5H11, C6H13, C7H15, C8H17. 化合物通过柱层析纯化, 结构通过1H NMR, IR, 元素分析等确证. 化合物热稳定性通过TGA测定, 并显示出较高的热稳定性. 通过偏光显微镜和差视扫描量热法对这些化合物的热致液晶性进行了研究. 结果显示: 对于苯并菲液晶化合物C18H6(OR)3(OCH2COOEt)3, 非对称性化合物较之对称异构体化合物有更低的熔点和更高的清亮点, 因而非对称性化合物有更宽的介晶温度范围. 对于分子中含有酰胺基的苯并菲液晶化合物C18H6(OR)3(OCH2CONHBu)3, 对称化合物有比非对称异构体更高的清亮点和更有序的六方柱状介晶相, 且其与具有同样软链长度的分子中不含酰胺基的化合物系列C18H6(OR)3(OCH2COOBu)3相比较, 由于柱内分子间氢键的形成, 不仅有更高的熔点和清亮点, 而且有更丰富的柱状介晶相.  相似文献   

4.
用B3LYP/6-311G(d,p)密度泛函方法对B2H5+阳离子和B2H5·自由基的几何异构体的空间构型进行了优化,并在此基础上用QCISD(T)/6-311++G(3df,2p)偶合簇法进行了单点能计算和零点能校正.结果表明,B2H5+单态有2种稳定的几何构型(D3h,C1),其中C1构型是新发现的.B2H5+三重态阳离子除已知Cs构型外,又发现两种稳定构型(C1).对于B2H5·自由基体系,共有4种异构体(包括两种新发现的构型Cs),其中,具有单桥结构的C2v最稳定.用二级多体微扰理论和密度泛函方法对前人所认为稳定的B2H5+单态的C2v构型进行了全优化,结果发现该构型始终具有一个虚频,不是稳定构型.对B2H5-阴离子体系的单态和三重态进行的全优化,理论上得出单态时具有C2v和Cs两种稳定构型,而三重态只有C2v一种稳定构型.  相似文献   

5.
采用密度泛函理论(DFT)计算了MgAl-LDHs层板与无机阴离子(F-、Cl-、NO3-、CO32-、SO42-)和有机阴离子(水杨酸根离子([HO(C6H4)COO]-)、苯甲酸根离子([(C6H5)COO]-)、对二甲氨基苯甲酸根离子([p-(CH3)2N(C6H4)COO]-)、十二烷基磺酸根离子[C12H25SO3]-、己烷基磺酸根离子[C6H13SO3]-、丙烷基磺酸根离子[C3H7SO3]-)间的相互作用,获得稳定超分子几何结构及相互作用能。层板主体与客体间存在较强的超分子作用,包括主客体间静电作用和氢键等。主、客体间相互作用能数值大小顺序为CO32- > SO42- > F-> Cl-> NO3-;[p-(CH3)2N(C6H4)COO]-> [(C6H5)COO]-> [HO(C6H4)COO]-和[C12H25SO3]-> [C6H13SO3]- > [C3H7SO3]-。另外,还采用自然键轨道(NBO)计算和分析了LDHs 层板与阴离子间作用机理,从二阶微扰理论计算得到的稳定化能变化趋势与相互作用能数据基本吻合。  相似文献   

6.
联苯基桥连双核茂锆化合物的合成及催化乙烯聚合   总被引:2,自引:0,他引:2  
4,4′-二溴联苯与n-BuLi反应得到对-联苯基二锂,再与四甲基环戊烯酮进行羰基加成,酸催化脱水,一步得到对-联苯基桥连四甲基环戊二烯配体4-(C5Me4H)C6H4-C6H4(C5Me4H)-4(1).配体1相继与n-BuLi和ZrCl4反应得到相应的联苯基桥连双(单茂三氯化锆)4-(C5Me4ZrCl3)C6H4-C6H4(C5Me4ZrCl3)-4,不经分离直接与环戊二烯基锂或茚基锂反应得到相应的双核锆化合物4-(C5MeZrCl2Cp′)C6H4-C6H4·(C5Me4ZrCl2Cp′)-4[Cp′=C5H5(2),C9H7(3)].研究了在MAO(MethylAluminoxane)助催化下,化合物2和3对乙烯聚合的催化性能.化合物2和3都显示了非常高的催化活性,并在较高的温度下达到最高活性.  相似文献   

7.
朱任宏  方聖鼎 《化学学报》1965,31(3):222-228
从云南省昭通县产的雪上一枝蒿中共分得生物碱五种,其中三种为已知物,即烏头碱、次岛头碱和一枝蒿乙素,另二种为新生物碱,暂名为一枝蒿戊素和己素。一枝蒿戊素的分子式为C24H39O6N,其示性式为C19H22(OH)3(OCH3)3-(N·C2H5);一枝蒿己素的分子式为C24H39O7N,其示性式为C19H21(OH)4(OCH3)3(N·C2H5);另从云南省东川县出产的雪上一枝蒿中,尚分得一新生物碱,暂称为一枝蒿庚素,分子式为C21H31O3N,其示性式为C19H24(:O)(OH)2(N·C2H5)。  相似文献   

8.
王娟  王进  盛六四  张允武 《化学学报》2004,62(4):355-361
利用激光溅射-分子束的方法研究了Al+和乙硫醇的气相化学反应,结果观察到了Al+与1~6个乙硫醇分子形成的团簇离子. 对团簇离子进行了密度泛函理论计算,找到了两种类型的异构体Al+(C2H5SH)n和HAl+SC2H5(C2H5SH)n-1,计算得到了相应的稳定结构和能量.分析质谱信号强度,结合理论计算结果,可推测出实验得到的n=1的产物离子是Al+(C2H5SH). n=2和3时产物离子开始转变为HAl+SC2H5(C2H5SH)n-1, n=4时,HAl+SC2H5(C2H5SH)3和Al+(C2H5SH)4两种产物离子都存在,n≥5以后,团簇离子Al+(C2H5SH)n开始成为主要的产物离子.  相似文献   

9.
使用AM1和PM3两种半经验方法,对所有的C36H2异构体实行非对称性限制的全优化,并结合频率分析及HF/6-31G单点能计算,确定了各异构体的基态结构及其相对稳定性.在此基础上,通过分析加成位置与异构体稳定性之间的关系,得出三条加成位置选择性的规律.最后,利用π-轨道轴矢量(POAV)方法计算了反应前后碳笼中张力的变化.张力与键级分析的结果表明加成位置选择性的规律不是由碳笼释放的张力决定的,而是由C36H2体系的总共轭性质决定的.  相似文献   

10.
催化辅助爆炸法合成碳纳米管   总被引:3,自引:0,他引:3  
报道了以三硝基苯酚(苦味酸,C6H3N3O7)、乙酸钴[Co(Ac)2]和菲(C14H10)作为爆炸物,通过热引发方式使其在不锈钢耐高压容器中发生爆炸反应来制备多壁碳纳米管.利用TEM,HRTEM和XRD等手段对碳纳米管和催化剂的形貌和结构进行表征,综合TEM和TG测试结果确定产物中碳纳米管的含量.结果表明,随着反应条件的变化,可获得外径分布在20~40nm范围内,管长为数十微米的多壁碳纳米管.金属钴催化剂在爆炸过程中原位生成.苦味酸装填密度的增大有利于碳纳米管含量的提高,优化条件(苦味酸的装填密度为0.2g/cm3)后碳纳米管的含量可达70%左右.  相似文献   

11.
The photochemistry of a model merocyanine-spiropyran system was analyzed theoretically at the MS-CASPT2//SA-CASSCF(14,12) level. Several excited singlet states were studied in both the closed spiropyran and open merocyanine forms, and the paths to the different S(1)/S(0) conical intersections found were analyzed. After absorption of UV light from the spiropyran form, there are two possible ultrafast routes to efficient conversion to the ground state; one involves the rupture of the C(spiro)-O bond leading to the open form and the other involves the lengthening of the C(spiro)-N bond with no photoreaction. From the merocyanine side the excited state can reach a very broad S(1)/S(0) conical intersection region that leads the system to the closed form after rotation of the central methine bond. Alternatively, rotation of the other methine bonds connects the system through different S(1)/S(0) conical intersections to several merocyanine isomers. The present work provides a theoretical framework for the recent experimental results (Buback , J. J. Am. Chem. Soc. 2010, 132, 1610-1619) and sheds light on the complex photochemistry of these kinds of compounds.  相似文献   

12.
The CCSD(T)/cc-pVTZ//CCSD/cc-pVTZ method is used to determine the geometries and energetics of the isomers HXCY vs HY─CX (XN, P, As; YO, S) and their dimers from chain dimerizations and head-to-head or head-to-tail [2 + 2] cyclodimerizations. The HO─CX structures with CX triple bonds lie at energies at least 18.5 kcal/mol above their HXCO isomers. However, the energy differences between the HXCS and HS─CX isomers are found to be particularly small, especially in the [H,P,C,S] and [H,As,C,S] systems. For (HNCY)2, the lowest energy dimers are the chain isomers, which lie ~11 kcal/mol below the lowest energy cyclic dimers aNO containing a NCNC ring and cNS containing a NCSC ring. Formation of the remaining dimers through dimerization from two monomers is predicted to be endothermic and thus thermodynamically disfavored. However, the energies of the chain isomers in the other (HXCY)2 (XP, As; YO, S) series are higher than those of the corresponding isomeric lowest energy cyclodimers. For (HXCO)2 (XP, As), the lowest energy structures are the head-to-head dimers hPO and hAsO containing a C─C─XX ring. For (HXCS)2 (XP, As), the lowest energy structures are the head-to-head dimers gPS and gAsS with a CCXS ring.  相似文献   

13.
High-level ab initio calculations have been carried out to reexamine relative stability of bowl, cage, and ring isomers of C(20) and C(20)(-). The total electronic energies of the three isomers show different energy orderings, strongly depending on the hybrid functionals selected. It is found that among three popular hybrid density-functional (DF) methods B3LYP, B3PW91, PBE1PBE, and a new hybrid-meta-DF method TPSSKCIS, only the PBE1PBE method (with cc-pVTZ basis set) gives qualitatively correct energy ordering as that predicted from ab initio CCSD(T)/cc-pVDZ [CCSD(T)-coupled-cluster method including singles, doubles, and noniterative perturbative triples; cc-pVDZ-correlation consistent polarized valence double zeta] as well as from MP4(SDQ)/cc-pVTZ [MP4-fourth-order Moller-Plesset; cc-pVTZ-correlation consistent polarized valence triple zeta] calculations. Both CCSD(T) and MP4 calculations indicate that the bowl is most likely the global minimum of neutral C(20) isomers, followed by the fullerene cage and ring. For the anionic counterparts, the PBE1PBE calculation also agrees with MP4/cc-pVTZ calculation, both predicting that the bowl is still the lowest-energy structure of C(20)(-) at T=0 K, followed by the ring and the cage. In contrast, both B3LYP/cc-pVTZ and B3PW91/cc-pVTZ calculations predict that the ring is the lowest-energy structure of C(20)(-). Apparently, this good reliability in predicting the energy ordering renders the hybrid PBE method a leading choice for predicting relative stability among large-sized carbon clusters and other carbon nanostructures (e.g., finite-size carbon nanotubes, nano-onions, or nanohorns). The relative stabilities derived from total energy with Gibbs free-energy corrections demonstrate a changing ordering in which ring becomes more favorable for both C(20) and C(20)(-) at high temperatures. Finally, photoelectron spectra (PES) for the anionic C(20)(-) isomers have been computed. With binding energies up to 7 eV, the simulated PES show ample spectral features to distinguish the three competitive C(20)(-) isomers.  相似文献   

14.
The structures and electronic properties of nanoscale "peapods," i.e., C(50) fullerenes inside single-walled carbon nanotubes (SWCNTs), were computationally investigated by density functional theory (DFT). Both zigzag and armchair SWCNTs with diameters larger than 1.17 nm can encapsulate C(50) fullerenes exothermically. Among the SWCNTs considered, (9,9) and (16,0) SWCNTs are the best sheaths for both D(3) and D(5h) isomers of C(50), corresponding to 0.32-0.34 nm tube-C50 distances. The orientation of C(50) inside nanotubes also affects the insertion energies, which depend on the actual tube-fullerene distances. The insertion of D(3) and D(5h) isomers of C(50) is somewhat selective; the less stable D(5h) isomer can be encapsulated more favorably inside SWCNTs at same tube-C(50) spacing. Because of the weak tube-C(50) interaction, the geometric and electronic structures of the peapods do not change greatly for the most stable configurations, but the selectivity in the interwall spacing and isomer encapsulation can be useful in separating various carbon fullerenes and their isomers.  相似文献   

15.
16.
IR and Raman spectroscopy has been used to study the evolution of the vibrational spectrum of bundled single-walled carbon nanotubes (SWNTs) during the purification process needed to remove metal catalyst and amorphous carbon present in arc-derived SWNT soot. We have carried out a systematic study to define the different outcomes stemming from the purification protocol (e.g., DO, DO/HCl, DO/HNO(3), H(2)O(2), H(2)O(2)/HCl), where dry oxidation (DO) or refluxing in H(2)O(2) was used in a first purification step to remove amorphous carbon. The second step involves acid reflux (HCl or HNO(3)) to remove the residual growth catalyst (Ni-Y). During strong chemical processing, it appears possible to create additional defects where carbon atoms are eliminated, the ring structure is now open, localized C=C bonds are created, and O-containing groups can be added to this defect to stabilize the structure. Evolution of SWNT skeletal disorder obtained via chemical processing was studied by Raman scattering. Higher intensity ratios of R- and G-band (I(R)/I(G)) are more typically found in SWNT materials with low D-band intensity and narrow G-band components. Using IR transmission through thin films of nanotubes, we can resolve the structure due to functional groups that were present in the starting material or added through chemical processing. After high-temperature vacuum annealing of the purified material at 1100 degrees C, IR spectroscopy shows that most of the added functional groups can be removed and that the structure that remains is assigned to the one- and two-phonon modes of SWNTs.  相似文献   

17.
A theoretical study on the protonation system of [N,C,C,S], [H,N,C,C,S]+, was performed at the B3LYP/6-311++G(d,p) and CCSD(T)/6-311++G(2df,2p) (single point) levels of theory. On the doublet [H,N,C,C,S]+ surface, 24 species were located as energy minima and 10 of them were considered as kinetically stable species. The species HNCCS+ with 2A' state and a shallow W-shaped skeleton was predicted to be the global minimum and kinetically the most stable species, being in good agreement with previous experimental findings. Furthermore, the protonation reactions of the stable [N,C,C,S] isomers were investigated in detail. The calculation results indicated that the [N,C,C,S] isomers may be significantly stabilized upon protonation. Finally, the possible covalent structures of the [H,N,C,C,S]+ isomers with considerable stability were briefly discussed.  相似文献   

18.
A theoretical study has been made on six isomers of H2SO2 using coupled-cluster singles and doubles with noniterative triple excitations (CCSD(T)). The isomers studied are sulfoxylic acid (S(OH)2; C2 and Cs conformers), sulfinic acid (HS(=O)OH; 2 C1 conformers), dihydrogen sulfone (H2SO2; C2v), sulfhydryl hydroperoxide (HSOOH; C1), thiadioxirane (Cs), and dihydrogen persulfoxide (H2SOO; Cs). Molecular geometries, harmonic vibrational frequencies, and infrared intensities of all species were obtained using the CCSD(T) method and the 6-311++G(2d,2p) basis set. All aforementioned species were found to be local minima, with the exception of thiadioxirane, which has one imaginary frequency. A prior possible infrared observation of sulfinic acid was reassessed on the basis of the present data. In agreement with previous MP2 results, the present CCSD(T) data provide support for at most 4 of the 8 observed frequencies. The CCSD(T) frequencies and intensities should be of assistance in future identification of H2SO2 isomers by vibrational spectroscopy. Relative energies were calculated using the CCSD(T) method and several larger basis sets. As found previously, the lowest energy species is C2 S(OH)2, followed by Cs S(OH)2, HS(=O)OH, H2SO2, HSOOH, thiadioxirane, and H2SOO. Expanding the basis set significantly reduces the relative energies of HS(=O)OH and H2SO2. The CCSD(T) method was used with extended basis sets (up to aug-cc-pV(Q+d)Z) and basis set extrapolation in two reaction schemes to calculate the DeltaH degrees t (25 degrees C) of C2 S(OH)2. The two reaction schemes gave -285.8 and -282.7 kJ mol-1, which are quite close to a prior theoretical estimate (-290 kJ mol-1).  相似文献   

19.
Ab initio molecular electronic structure theory has been used to predict the structures and relative energies of the normal and ring isomers of triatomic sulfur. Self-consistent-field theory was used in conjunction with a double zeta basis set S(11s7p/6s4p), augmented by three sets of s and p bond functions. After correction for the effects of electron correlation, the open and closed isomers of S3 are predicted to be nearly comparable energetically, the open form lying lower by 4.3 kcal.  相似文献   

20.
Energetics of eight enol isomers of a malonaldehyde (MA) at the ground state in CCl4 solvent environment have been investigated using a hybrid quantum mechanical (QM)/molecular mechanics (MM) method. It is found that relative energies of the isomers slightly change due to interactions between MA and surrounding atoms. In an isolated environment all eight isomers have stable planar structure. On the other hand, most of the isomers have nonplanar structure in CCl4 whose interactions with the solute molecules are, however, weak. Mainly, structural changes are found in the H? O? C?C dihedral angle ?H? O? C?C, i.e., a hydrogen atom that is connected directly with an oxygen atom, is located at a nonplanar position, and other atoms remain almost planar. Vertical excitation energies of low‐lying excited states at the resultant optimized structure of each isomer are evaluated. The vertical excitation energies in CCl4 are almost the same as those in the isolated environment, but some changes were found in the triplet excitation states. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号