首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
采用浸渍法制备了表面AgX(X=I,Br)等离子基元修饰的ZnO纳米柱状阵列,研究了浸渍浓度和时间以及紫外光光照预处理对ZnO纳米柱状阵列可见光光催化活性的影响.采用场发射扫描电子显微镜、X射线衍射仪、紫外可见漫反射吸收光谱以及X射线光电子能谱仪等手段对ZnO纳米柱状阵列的形貌、相组成、禁带宽度及其表面特性进行了表征.结果显示,AgBr颗粒分布于ZnO纳米柱状阵列的顶端及顶端侧面,同时AgBr颗粒之间相互接触而形成网状结构.通过紫外光光照预处理,AgBr表面出现细小颗粒,形成Ag/AgBr/ZnO纳米复合结构.可见光光催化降解甲基橙结果表明,在相同工艺条件下所制AgBr/ZnO的可见光光催化活性明显优于AgI/ZnO,且与浸渍浓度及时间有关.由于ZnO纳米柱状阵列的比表面积大,AgBr的可见光响应特性以及Ag/AgBr纳米结构的表面等离子效应,经过紫外光光照预处理形成的Ag/AgBr/ZnO纳米复合结构表现出最好的可见光光催化活性.  相似文献   

2.
Porous metal‐organic frameworks (MOFs) loading metal nanoparticles to form a composite photocatalyst demonstrated unique advantages. Modification of the electron donating group on the aromatic linkers of MOFs could increase the absorption range of light, thereby increasing the photocatalytic activity. In this study, we prepared a composite photocatalyst using a stable NH2‐functionalized MOF (UiO‐66‐NH2) to load semiconductor Ag/AgBr nanoparticles, and the resultant composites have intense optical absorption throughout visible light range. The greatly enhanced optical absorption and the unique hetero‐junction between Ag/AgBr and UiO‐66‐NH2 render efficient separation and utilization of photogenerated electron‐hole pairs. Therefore, Ag/AgBr@UiO‐66‐NH2 showed much more excellent photocatalytic activity, compared with unmodified UiO‐66 loading Ag/AgBr (Ag/AgBr@UiO‐66) and reported AgX@MOF catalysts. Moreover, the composite photocatalysts showed excellent stability during cycling experiment.  相似文献   

3.
A novel photocatalytic material was synthesized by dispersion of AgBr in nanoAlMCM-41 material. The AgBr/nanoAlMCM-41 sample shows strong absorption in the visible region because of the plasmon resonance of Ag nanoparticles in AgBr/nanoAlMCM-41. The catalysts were characterized using XRD (X-ray diffraction), UV-visible diffused reflectance spectra (UV-vis DRS) and scanning electron microscopy (SEM). The photocatalytic activity and stability of the synthesized catalysts were evaluated for methylene blue (MB) degradation in aqueous solution in the presence of 200 W tungsten filament Philips lamp. Several parameters were examined, catalyst amount, pH and initial concentration of MB, AgBr loading. The effect of dosage of photocatalyst was studied in the range 0.05-1.00 g/L. It was seen that 0.1 g/L of photocatalyst is an optimum value for the dosage of photocatalyst. The support size was obtained about 9-100 nm. In the same way, the average size of AgBr nanoparticles was about 10nm before visible radiation. After visible radiation the average size of AgBr nanoparticles was about 25 nm.  相似文献   

4.
In this article, we report that Ag/AgBr nanostructures and the corresponding graphene oxide (GO) hybridized nanocomposite, Ag/AgBr/GO, could be facilely synthesized by means of a surfactant-assisted assembly protocol, where an oil/water microemulsion is used as the synthesis medium. We show that thus-produced nanomaterials could be used as highly efficient and stable plasmonic photocatalysts for the photodegradation of methyl orange (MO) pollutant under sunlight irradiation. Compared with the bare Ag/AgBr nanospecies, Ag/AgBr/GO displays distinctly enhanced photocatalytic activity. More importantly, the as-prepared nanostructures exhibit higher photocatalytic activity than that of the corresponding Ag/AgBr-based nanomaterials synthesized viaa water/oil microemulsion and than that of the corresponding Ag/AgCl-based nanospecies synthesized by an oil/water microemulsion. An explanation has been proposed for these interesting findings. Our results suggest that thus-manufactured Ag/AgBr/GO plasmonic photocatalysts are promising alternatives to the traditional UV light or visible-light driven photocatalysts.  相似文献   

5.
采用水热法和光致还原法制备了具有等离子体共振效应的Ag@AgBr可见光催化剂,利用XRD,SEM,EDX,DRS和XPS等手段对产物的结构和性能进行表征,并研究了催化剂在可见光下对罗丹明B(RhB)的光催化降解性能,考察了催化剂的循环使用及捕获剂对Ag@AgBr光催化性能的影响.结果表明:贵金属Ag纳米粒子的表面等离子体共振效应可显著增强Ag@AgBr对可见光的吸收;催化剂对罗丹明B具有较高的可见光降解活性和稳定性,在可见光下照射90 min,对罗丹明B的降解率达95%以上,光催化剂循环使用5次仍具有良好的光催化降解活性;淬灭实验表明在Ag@AgBr降解罗丹明B过程中,吸附在催化剂表面的h+、·OH、O2·-是主要的活性物种.  相似文献   

6.
以Ag2WO4为载体,采用离子交换法合成了新型的AgBr/Ag2WO4复合光催化剂.利用XRD、SEM和UV-Vis对AgBr/Ag2WO4催化剂进行了表征,在可见光条件下(500 W、λ>420 nm)、以甲基橙(MO)为染料模型研究了AgBr/Ag2WO4的光催化活性.结果表明,AgBr/Ag2WO4具有比单独的AgBr和Ag2WO4更佳的催化活性,其中30%-AgBr/Ag2WO4复合催化剂具有最大光催化活性.机理研究表明,在MO的降解过程中,·O2-起主要作用,h+次之而·OH可以忽略.AgBr和Ag2WO4之间构成的异质结有效分离了光生电子和空穴,提高了催化剂的活性.  相似文献   

7.
In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag-AgBr through a facile hydrothermal and subsequently sunlight-induced route. The diffuse reflectance spectra of Ag-AgBr indicate strong absorption in both UV and visible light region. The obtained photocatalyst shows excellent sunlight-driven photocatalytic performance. It can decompose organic dye within several minutes under direct sunlight irradiation and maintain a high level even though used five times. In addition, both the scanning electron microscopy images and X-ray photoelectron spectroscopy dates reveal the as-prepared photocatalyst to be very stable. Moreover, the mechanism suggests that the high photocatalytic activity and excellent stability result from the super sensitivity of AgBr to light, the surface plasmon resonance of Ag nanoparticles in the region of visible light, and the complexation between Ag(+) and nitrogen atom. Thus, the facile preparation and super performance of Ag-AgBr will make it available to utilize sunlight efficiently to remove organic pollutants, destroy bacteria, and so forth.  相似文献   

8.
首先以沉积-沉淀法制备AgBr/TiO2复合催化剂,然后采用离子交换法制备出新型的异质结型AgI/AgBr/TiO2光催化剂.利用XRD和UV-Vis对AgI/AgBr/TiO2光催化剂进行了表征.以甲基橙为染料模型,在可见光条件下(500 W、λ>420 nm)研究了AgI的含量对AgI/AgBr/TiO2催化活性的影响.结果表明,AgI拓展了催化剂的吸收光谱范围;AgI生成量为AgBr的5%时,AgI/AgBr/TiO2的催化活性最高.AgI/AgBr异质结的形成有利于光生电子和空穴的分离,提高AgI/AgBr/TiO2的催化活性.  相似文献   

9.
以TiO2为载体,采用双注法合成了AgBr/TiO2复合光催化剂.利用X射线衍射仪(XRD)、紫外可见分光光度计(UV-Vis)和扫描电子显微镜(SEM)对AgBr/TiO2的结构、光吸收、形貌进行了表征.研究了AgBr/TiO2在可见光下对甲基橙和丁基罗丹明B的光催化活性.结果表明,与TiO2相比,AgBr/TiO2的光吸收范围拓展到400—600nm波段,并且随着AgBr负载量的增加,AgBr/TiO2的可见光吸收强度增强;当AgBr与TiO2的摩尔比为0.25时,AgBr/TiO2具有最大催化活性;在相同条件下,AgBr/TiO2对丁基罗丹明B的降解效果优于甲基橙.  相似文献   

10.
One-dimensional (1D) Ag/AgBr/TiO2 nanofibres (NFs) have been successfully fabricated by the one-pot electrospinning method. In comparison with bare TiO2 NFs and Ag/AgBr/PVP (polyvinylpyrrolidone) NFs, the 1D Ag/AgBr/TiO2 NFs photocatalyst exhibits much higher photocatalytic activity in the degradation of a commonly used dye, methylene blue (MB), under visible light. The photocatalytic removal efficiency of MB over Ag/AgBr/TiO2 NFs achieves almost 100 % in 20 min. The photocatalytic reaction follows the first-order kinetics and the rate constant (k) for the degradation of MB by Ag/AgBr/TiO2 NFs is 5.2 times and 6.6 times that of Ag/AgBr/PVP NFs and TiO2 NFs, respectively. The enhanced photocatalytic activity is ascribed to the stronger visible light absorption, more effective separation of photogenerated electron-hole pairs, and faster charge transfer in the long nanofibrous structure. The Ag/AgBr/TiO2 NFs maintain a highly stable photocatalytic activity due to its good structural stability and the self-stability system of Ag/AgBr. The mechanisms for photocatalysis associated with Ag/AgBr/TiO2 NFs are proposed. The degradation of MB in the presence of scavengers reveals that h+ and ?O 2 ? significantly contribute to the degradation of MB.  相似文献   

11.
以钛酸四丁酯、KBr、AgNO3为前体,合成了具有异质结结构的纳米AgBr/Ti O2复合可见光催化剂.利用XRD、TEM、HRTEM和UV-Vis等方法对催化剂的晶相组成、形貌、粒度、微观结构、吸光性能等进行了表征.光催化降解亚甲基蓝活性结果表明,复合与单组分催化剂的光催化活性顺序为:AgBr/Ti O2AgBrAg-Br/P25P25Ti O2.含光敏剂AgBr的复合及单组份催化剂由于具有对可见光的良好吸收性能而具有较高的光催化活性.对于AgBr/Ti O2光催化剂,随mAgNO3/mTi O2比的增加,光催化活性先增强后减弱,当mAgNO3/mTi O2=3.35时光催化活性最高,分析结果表明,该复合催化剂粒径约15 nm,分散均匀且形成了紧密接触的AgBr/Ti O2异质结微结构,在紫外可见区(250~800 nm)都具有最强的光吸收.  相似文献   

12.
Ag/AgBr/TiO2 was prepared by the deposition-precipitation method and was found to be a novel visible light driven photocatalyst. The catalyst showed high efficiency for the degradation of nonbiodegradable azodyes and the killing of Escherichia coli under visible light irradiation (lambda>420 nm). The catalyst activity was maintained effectively after successive cyclic experiments under UV or visible light irradiation without the destruction of AgBr. On the basis of the characterization of X-ray diffraction, X-ray photoelectron spectroscopy, and Auger electron spectroscopy, the surface Ag species mainly exist as Ag0 in the structure of all samples before and after reaction, and Ag0 species scavenged hVB+ and then trapped eCB- in the process of photocatalytic reaction, inhibiting the decomposition of AgBr. The studies of ESR and H2O2 formation revealed that *OH and O2*- were formed in visible light irradiated aqueous Ag/AgBr/TiO2 suspension, while there was no reactive oxygen species in the visible light irradiated Ag0/TiO2 system. The results indicate that AgBr is the main photoactive species for the destruction of azodyes and bacteria under visible light. In addition, the bactericidal efficiency and killing mechanism of Ag/AgBr/TiO2 under visible light irradiation are illustrated and discussed.  相似文献   

13.
Synthesis of inorganic single crystals with exposed high-reactivity facets is a desirable target in the catalytic chemistry field. Polyhedral AgBr microcrystals with an increased percentage of exposed high-reactivity {111} facets have been successfully prepared for the first time, and the photocatalytic performance of these microcrystals when used as an AgBr/Ag plasmonic photocatalyst was investigated. The results indicate that the as-prepared sample has high photocatalytic activity and, under the same measurement conditions, the photodegradation rate of methyl orange dye over these microcrystals is at least four times faster than with other shapes of AgBr/Ag microstructure, as well as 20?times faster than with the highly efficient Ag(3)PO(4) photocatalyst. DFT calculations suggest that the AgBr (111) surface is mainly composed of unsaturated Ag atoms and has a relatively high surface energy, both of which are favorable for enhancing the photocatalytic activity of the AgBr/Ag polyhedron photocatalyst. This work not only provides a highly efficient plasmonic photocatalyst of polyhedral AgBr/Ag microcrystals with an increased percentage of exposed high-reactivity AgBr {111} facets, but also demonstrates that the shape and crystalline quality of the exposed facets have an important influence on the photocatalytic activities.  相似文献   

14.
An efficient method of photocatalytic degradation of methylparaben in water using Ag nanoparticles (NPs) loaded AgBr‐mesoporous‐WO3 composite photocatalyst (Ag/AgBr@m‐WO3), under visible light is presented. In this process, quantification of methylparaben in water was carried out by high‐performance liquid chromatography (HPLC) and the HPLC results showed a significant reduction of methylparaben in water due to the enhanced of photocatalytic degradation efficiency of Ag/AgBr@m‐WO3. For the material synthesis, highly ordered mesoporous‐WO3 (m‐WO3) was initially synthesized by sol–gel method and AgBr nanoparticles (NPs) were subsequently introduced in the pores of m‐WO3, and finally, the Ag nanoparticles were introduced by light irradiation. The enhanced photocatalytic degradation of methylparaben in water is attributed to the formation of surface plasmonic resonance (SPR) due to the introduction of Ag NPs on the surface of the catalyst. Also, the formation of heterojunction between AgBr and mesoporous‐WO3 in Ag/AgBr@m‐WO3 significantly inhibited the recombination of light‐induced electron‐hole pairs in the semiconductor composite. The morphological and optical characterizations of the synthesized photocatalysts (Ag/AgBr@m‐WO3) were carried out using SEM, TEM, XDR, N2 adsorption–desorption, UV‐VIS diffuse reflectance spectroscopy (DRS). Also, the photocatalytic studies using radical scavengers were carried out and the results indicated that O 2 · - is the main reactive species.  相似文献   

15.
采用化学沉淀法制备ZnO微球,利用柠檬酸三钠(TCD)避光还原硝酸银在ZnO表面沉积银粒子制备Ag/ZnO复合材料.利用XRD、SEM、TEM、EDS、FTIR、UV-vis DRS、PL、BET等对Ag/ZnO的结构、组分、形貌及光谱性质进行了表征,通过紫外及可见光照降解甲基橙溶液评价样品的光催化性能.结果表明:ZnO纳米微球是由ZnO纳米片相互交错构筑而成的具有丰富孔道的分级结构,Ag纳米粒子均匀沉积在ZnO纳米片上.Ag的沉积显著增加了ZnO的可见光吸收,猝灭了ZnO荧光,提高了ZnO催化活性.  相似文献   

16.
Noble metal nanoparticles (NPs) are often used as electron scavengers in conventional semiconductor photocatalysis to suppress electron-hole (e(-)-h(+) ) recombination and promote interfacial charge transfer, and thus enhance photocatalytic activity of semiconductors. In this contribution, it is demonstrated that noble metal NPs such as Ag NPs function as visible-light harvesting and electron-generating centers during the daylight photocatalysis of AgBr@Ag. Novel Ag plasmonic photocatalysis could cooperate with the conventional AgBr semiconductor photocatalysis to enhance the overall daylight activity of AgBr@Ag greatly because of an interesting synergistic effect. After a systematic investigation of the daylight photocatalysis mechanism of AgBr@Ag, the synergistic effect was attributed to surface plasmon resonance induced local electric field enhancement on Ag, which can accelerate the generation of e(-)-h(+) pairs in AgBr, so that more electrons are produced in the conduction band of AgBr under daylight irradiation. This study provides new insight into the photocatalytic mechanism of noble metal/semiconductor systems as well as the design and fabrication of novel plasmonic photocatalysts.  相似文献   

17.
Plasmonic photocatalytic nanostructured system was investigated on silver chloride/silver nanoparticles under visible light. Silver chloride/silver nanoparticles were readily prepared using dispersing agent and light irradiation. The d-spacing analysis, high resolution-transmission electron microscopy, X-ray diffraction analysis and diffuse-reflectance spectroscopy demonstrated that silver nanoparticles were introduced on the surface of silver chloride nanoparticles and then silver chloride/silver nanostructured photocatalytic materials were successfully synthesized. The as-synthesized plasmonic photocatalysts exhibited the enhanced photocatalytic performance over nitrogen-doped titania nanomaterials. The improved catalytic activity was originated from the enhanced adsorption for visible light, electron–hole separation, and the formation of chloride atoms in silver chloride/silver nanostructured materials.  相似文献   

18.
利用溶胶-凝胶法及光沉积法制备纳米金-钛酸锌(Nano Au-ZnTiO3)复合等离子光催化剂。 采用X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、紫外可见漫反射光谱、荧光光谱、光电流密度、光催化制氢性能等技术手段和测试表征了样品的结构及性能。 结果表明,ZnTiO3在900 ℃煅烧下呈立方相和六角相的混合相,其形貌呈近似球形,粒径约为50~100 nm。 由于纳米金(Nano Au)的表面等离子共振效应,Nano Au-ZnTiO3复合材料在可见光区有较强的吸收,吸收峰位于525 nm处。 Nano Au-ZnTiO3复合等离子光催化剂在可见光激发下呈现出优良的光催化分解水制氢活性。  相似文献   

19.
Uniform cubic Ag@AgCl and Ag@AgBr plasmonic photocatalysts with side length of 0.7 µm were synthesized by a facile green route, in which a controllable double-jet precipitation technique was employed to fabricate homogeneous cubic AgCl and AgBr grains while a photoreduction process was used to produce Ag nanoparticles (NPs) on the surface of AgCl and AgBr grains. The synthesized samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy (DRS). The photocatalytic activities of Ag@AgCl and Ag@AgBr were compared using degradation of methyl orange (MO) dye and 2,4-dichlorophenol (2,4-DCP) under visible-light irradiation. Ag@AgBr showed higher photocatalytic activity for MO degradation but weaker activity for 2,4-DCP decomposition. Possible degradation mechanisms are proposed to interpret these contrary paradoxical experimental results.  相似文献   

20.
Layered protonated titanate nanosheets (LPTNs) loaded with silver nanoparticles are prepared by a simple one‐pot hydrothermal route in silver‐ammonia solution. The as‐synthesized Ag‐loaded LPTNs possess large specific surface area. The Ag nanoparticles are highly dispersed on the surface of the LPTNs. They have negligible effects on the crystal structure, crystallinity, and surface area of the LPTNs but result in considerable enhancement of visible‐light absorption and in a red‐shift of the band gap for the LPTNs. The Ag‐loaded LPTNs show enhanced photocatalytic activity for both liquid‐ and gas‐phase reactions under visible‐light irradiation. Moreover, the photocatalytic activity first increases gradually with increasing Ag loading content, and then decreases after maximizing at an optimal Ag content. At the Ag loading content of 2.87 mol % and 1.57 mol %, the Ag‐loaded LPTNs exhibit the highest visible‐light photocatalytic activity for degradation of rhodamine B in water and mineralization of benzene in air, respectively. An alternative possible mechanism for the enhancement of the visible‐light photocatalytic activity is also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号