首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Salinity toxicity is a worldwide agricultural and eco-environmental problem. Many literatures show that arbuscular mycorrhizal fungi (AMF) can enhance salt tolerance of many plants and some physiological changes occurred in AM symbiosis under salt stress. However, the role of ROS-scavenging enzymes in AM tomato is still unknown in continuous salt stress. This study investigated the effect of Glomus mosseae on tomato growth, cell membrane osmosis and examined the antioxidants (superoxide-dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; peroxidase, POD) responses in roots of mycorrhizal tomato and control under different NaCl stress for 40 days in potted culture. NaCl solution (0, 0.5 and 1%) was added to organic soil in the irrigation water after 45 days inoculated by AMF (Glomus mosseae). (1) AMF inoculation improved tomato growth under salt or saltless condition and reduced cell membrane osmosis, MDA (malonaldehyde) content in salinity. So the salt tolerance of tomato was enhanced by AMF; (2) SOD, APX and POD activity in roots of AM symbiosis were significantly higher than corresponding non-AM plants in salinity or saltless condition. However, CAT activity was transiently induced by AMF and then suppressed to a level similar with non-AM seedlings; (3) higher salinity (1% level) and long stress time suppressed the effect of AMF on SOD, APX, POD and CAT activity; (4) this research suggested that the enhanced salt tolerance in AM symbiosis was mainly related with the elevated SOD, POD and APX activity by AMF which degraded more reactive oxygen species and so alleviated the cell membrane damages under salt stress. Whereas, the elevated SOD, POD and APX activity due to AMF depended on salinity environment.  相似文献   

2.
An investigation was carried out to find out the extent of changes occurred in groundnut (Arachis hypogaea L.) cultivars in response to paclobutrazol (PBZ) treatment under water deficit stress. Two groundnut cultivars namely ICG 221 and ICG 476 were used for the study. Individual treatment with PBZ and drought stress showed an increase in ascorbic acid, -tocopherol and reduced glutathione, superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) activities. PBZ with drought stressed plants maintained higher levels of antioxidant and scavenging enzymes. Significant differences were observed between cultivars and treatments. These results suggests that the adverse effects of water stress can be minimized by the application of PBZ by increasing the antioxidant levels and activities of scavenging enzymes such as SOD, APX and CAT. The Cv. ICG 221 appears to be more tolerant to water stress than the ICG 476.  相似文献   

3.
The variations in antioxidant potentials and indole alkaloid content were studied in the present investigation, in two varieties (rosea and alba) of Catharanthus roseus, an important herb used in traditional as well as modern medicine, exposed to water deficit stress. The antioxidant and alkaloid profiles were estimated from root, stem, leaf, flowers and pods. The antioxidant potentials were examined in terms of non-enzymatic antioxidant molecules and activities of antioxidant enzymes. The non-enzymatic antioxidant molecules studied were ascorbic acid (AA), -tocopherol (-toc) and reduced glutathione (GSH). The estimated antioxidant enzymes were superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), peroxidase (POX) and polyphenol oxidase (PPO). The antioxidant concentrations and activities of antioxidant enzymes were high under water deficit stress in all parts of the plants. Indole alkaloid content was high in the roots of rosea variety in response to stress when compared to alba variety.  相似文献   

4.
5.
In the present study, a pot culture experiment was conducted to estimate the ameliorating effect of propiconazole (PCZ) on drought stress in cowpea (Vigna unguiculata (L.) Walp.) plants. From 30 days after sowing (DAS), the plants were subjected to 3, 6 and 9 days interval drought (DID) stress and drought stress with PCZ at 15 and 15 mg l(-1) PCZ alone and 1 day interval irrigation was kept as control. The plant samples were collected on 34 DAS (3 DID), 37 DAS (6 DID) and 40 DAS (9 DID). The plants were separated into root, stem and leaf for estimating the antioxidant contents and activities of antioxidant enzymes. Individual and combined drought stress and PCZ treatments increased ascorbic acid (AA), alpha-tocopherol (alpha-toc) contents, superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and polyphenol oxidase (PPO) activities when compared to control. The PCZ treatment mitigated the adverse effects of drought stress by increasing the antioxidant potentials and thereby paved the way for overcoming drought stress in V. unguiculata plants.  相似文献   

6.
分别应用含有120μmol·L-1 La3+,50μmol·L-1 Cd2+,100μmol·L-1 Cd2+,50μmol·L-1 Cd2++120μmol·L-1 La3+,100μmol·L-1Cd2++120μmol·L-1 La3+的培养基培养黑曲霉,3 d后测定黑曲霉菌球的生物量及其胞内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、过氧化物酶(POD)和谷胱甘肽-S-转移酶(GST)活性及脂质过氧化产物(MDA)的变化。结果表明,50和100μmol.L-1Cd2+降低了黑曲霉生物量和五种抗氧化酶活性,并诱导了MDA产物的升高。与Cd2+单一处理比较,50μmol·L-1 Cd2++120μmol·L-1 La3+和100μmol·L-1 Cd2++120μmol·L-1 La3+处理组均不同程度上诱导了五种抗氧化酶活性的升高,并降低了MDA的积累水平。其中,120μmol·L-1 La3+对50μmol·L-1 Cd2+氧化胁迫的缓解效应明显高于100μmol·L-1 Cd2+。因此,La对黑曲霉中低剂量Cd胁迫的缓解效应比较显著,而对高剂量Cd的拮抗效应不明显。  相似文献   

7.
Effects of CO2 laser pretreatment on drought stress resistance in wheat   总被引:3,自引:0,他引:3  
In order to determine the role of laser in drought stress resistance of spring wheat (Triticum aestivum L.), seed embryos were exposed to CO2 laser radiation for 0min, 1min, 3min and 5min, respectively, and when the seedlings were 12 days old they were treated with 10% (w/v) PEG6000 solution for 10 days. Changes in the concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), glutathione (GSH), ascorbate (AsA), oxidized glutathione (GSSG), carotenoid, zeaxanthin, the production rate of superoxide radical (O2(-)), the activities of ascorbate peroxidase (APX), peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GP), glutathione-S-transferase (GST) and the growth parameters of seedlings (plant height, leaf area and dry weight) were measured to test the effects of laser pretreatment. The results showed that suitable laser pretreatment of embryos enhanced drought stress resistance in wheat seedlings by decreasing the concentration of MDA and H2O2, GSSG, the production rate of O2(-), leaf area and increasing the activities of APX, GST, GP and POD and AsA, carotenoid and zeaxanthin concentration. It is suggested that those changes in MDA, O2(-) H2O2, anti-oxidative enzymes and anti-oxidative compounds were responsible for the increase in drought stress resistance observed in the experiments. The results also showed that the laser had a long-term positive physiological effect on the growth of drought stress seedlings. This is the first investigation reporting the use of CO2 laser pretreatment to enhance drought stress resistance of spring wheat.  相似文献   

8.
9.
Isolation of high-quality RNA from Dendrobium candidum is particularly difficult. D. candidum contains considerable amounts of polysaccharides that coprecipitate with RNA, which render RNA unsuitable for either cDNA synthesis and/or PCR amplification. In this paper, a rapid and efficient method was described for functional RNA isolation from the callus of D. candidum. The procedure included: (i) an extraction with phenol and isopropyl alcohol, to remove proteins and polyphenols; (ii) purifications by lithium chloride, pre-cooled (−20 °C) ethanol successively to remove polysaccharides. The method resulted in high-quality RNA suitable for DDRT-PCR and cDNA library analysis finally.  相似文献   

10.
Plants exposed to salt stress undergo biochemical and morphological changes even at cellular level. Such changes also include activation of antioxidant enzymes to scavenge reactive oxygen species, while morphological changes are determined as deformation of membranes and organelles. Present investigation substantiates this phenomenon for Caralluma tuberculata calli when exposed to NaCl stress at different concentrations. Elevated levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) in NaCl-stressed calli dwindled upon application of non-enzymatic antioxidants; ascorbic acid (AA) and salicylic acid (SA). Many fold increased enzymes concentrations trimmed down even below as present in the control calli. Electron microscopic images accentuated several cellular changes upon NaCl stress such as plasmolysed plasma membrane, disruption of nuclear membrane, increased numbers of nucleoli, alteration in shape and lamellar membrane system in plastid, and increased number of plastoglobuli. The cells retrieved their normal structure upon exposure to non-enzymatic antioxidants. The results of the present experiments conclude that NaCl aggravate oxidative molecules that eventually alleviate antioxidant enzymatic system. Furthermore, the salt stress knocked down by applying ascorbic acid and salicylic acid manifested by normal enzyme level and restoration of cellular structure.  相似文献   

11.
To probe into the potential of relieving the oxidative damage of salt stress, we investigated the protective role of nitric oxide on barley under salt stress. Salt stress resulted in increased ion leakage, lipid peroxidation and protein oxidation in barley leaves. Simultaneous treatments of barley leaves with 50 microM sodium nitroprusside, a nitric oxide donor, alleviated the damage of salt stress, reflected by decreased ion leakage, and malendialdehyde (MDA), carbonyl, and hydrogen peroxide content in barley leaves. The presence of the nitric oxide donor increased the activities of superoxide dismutases (SOD), ascorbate peroxidases (APX), and catalases (CAT). Meantime, sodium nitroprusside addition increased accumulation of ferritin at the protein level, indicating that nitric oxide directly regulated ferritin accumulation. These results suggested that nitric oxide can effectively protect seedlings from salt stress damage by enhancing activities of antioxidant enzymes to quench the excessive reactive oxygen species caused by salt stress and inducing the increase of ferritin accumulation to chelate larger number of ferrous ion. Information from this study can be used to improve soil management practices for sustainable use of salt-affected soils in the future.  相似文献   

12.
13.
Leymus chinensis seedlings were treated with 0.05--10 mmol/L vitamin E under osmotic stress in the presence of polyethylene glycol(PEG) as the stress reagent. The effects of the different concentrations of exogenous vitamin E on the activities of SOD, POD and free proline, and the MDA contents under drought stress were examined so as to ascertain the mechanism of Leymus chinensis resistance to drought stress and explore the possible preventive measures. The results indicate that the activities of SOD and POD decreased but the free proline and MDA contents increased as drought stress was accentuated, showing an enhancement of oxidative stress that may cause a decline in membrane stabilization. However, the activities of SOD and POD and the free proline content increased, whereas the MDA content reduced in Leymus chinensis pretreated with vitamin E in comparison with that of the control. This indicates that exogenous vitamin E enhanced the antioxidation of Leymus chinensis seedlings. It suggests that cytomembrane can be protected from damage by increasing the free proline content and the activities of SOD and POD that result in enhancing the drought resistance of Leymus chinensis seedlings.  相似文献   

14.
以小麦幼苗为对象,研究了在酸雨胁迫下小麦叶片延迟发光强度变化与小麦叶 片内生理物质,包括叶绿素a,叶绿素b,类胡萝卜素,丙二醛,CAT,POD,SOD含 量变化及小麦生态变化的相关性.实验结果说明,在酸雨胁迫下延迟发光强度与小 麦抗逆过程中CAT,POD,SOD,类胡萝卜素和丙二醛含量变化,具有明显的一致性 .CAT,POD,SOD指示着小麦组织内活性氧自由基和过氧化氢含量的变化,类胡萝 卜素和丙二醛也反映出小麦组织内氧化性物质含量的变化.说明延迟发光强度与植 物体内活性氧含量及还原性物质含量具有明确的相关性.由于上述各种生理变化与 植物抗病、抗逆机制密切相关,因此可以利用延迟发光结合生态变化作为综合性反 映植物抗逆过程的指标.  相似文献   

15.
The aim of this study was to investigate the effects of Lycium barbarum polysaccharide (LBP) on alcohol-induced liver damage in rats. A total of 36 rats were divided into control, ethanol and ethanol + LBP groups. Rats in the ethanol group were fed 7 g ethanol/kg body weight by gastric infusion, three times a day, for 30 consecutive days, while rats in the control group received the same volume of physiological saline instead of ethanol, and rats in ethanol + LBP group were fed both ethanol (7 g/kg body weight) and LBP (300 mg/kg body weight/day). Alcoholic liver injury was examined by serum ALT and AST activities, alcoholic fatty liver was assessed by lipid levels, and oxidative stress was evaluated by SOD, CAT, GSH-Px, GSH and MDA assays. In the ethanol group, a significant elevation of enzymes and lipid in serum, increased MDA level and depletion of SOD, CAT, GSH-Px and GSH in liver were observed. LBP administration significantly ameliorated liver injury, prevented the progression of alcohol-induced fatty liver, and improved the antioxidant functions when compared with the ethanol group. Histopathological examination of rat liver revealed that LBP administration protected liver cells from the damage induced by ethanol. The results suggest that LBP is a promising agent to protect the liver from hepatotoxicity and fatty liver induced by ethanol intake.  相似文献   

16.
To understand the effect of enhanced UV-B radiation and low-energy N+ ion beam radiation on the response of photosynthesis, antioxidant enzymes, and lipid peroxidation in rice seedlings, Oryza sativa was exposed to three different doses of low-energy N+ ion beam and enhanced UV-B alone and in combination. Enhanced UV-B caused a marked decline in some photosynthetic parameters (net photosynthetic rate, transpiration rate, and stomatal conductance) and photosynthetic pigments, whereas it induced an increase in hydrogen peroxide (H2O2) accumulation, the rate of superoxide radical production, and the content of malondialdehyde (MDA). Enhanced UV-B also induced an increase in the activity of antioxidant enzymes (superoxide dismutase [SOD], peroxidase (POD), and catalase [CAT]) and some nonenzymatic antioxidants such as proline. Under the combined treatment of enhanced UV-B and low-energy N+ ion beam at the dose of 3.0?×?1017 N+ cm?2, the activity of antioxidant compounds (SOD, POD, CAT, proline, and glutathione), photosynthetic pigments, and some photosynthetic parameters (net photosynthetic rate, transpiration rate, and stomatal conductance) increased significantly; however, the MDA content, H2O2 accumulation, and rate of superoxide radical production showed a remarkable decrease compared with the enhanced UV-B treatment alone. These results implied that the appropriate dose of low-energy N+ ion beam treatment may alleviate the damage caused by the enhanced UV-B radiation on rice.  相似文献   

17.
The damage in the pup rat brain with low-level mercury exposure, and the concentration variation of trace elements in the rat hippocampus was determined by synchrotron radiation X-ray fluorescence technique (SRXRF). Meanwhile, the levels and activities of glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) in the hippocampus were also measured. The results showed that the low dose of inorganic mercury prenatal and postnatal exposure could lead to the significant increase of both copper and zinc contents and remarkable decrease of iron content in pup rat brain. Compared to the control group, the activities of antioxidant enzymes such as GSH-Px, SOD, the contents of GSH and MDA in the pup rat hippocampus of mercury-exposed group fell down obviously.  相似文献   

18.
A pot culture experiment was conducted to estimate the stress ameliorating ability of paclobutrazol, a triazole fungicide in Vigna unguiculata (L.) Walp. plants. Treatments were given as 80 mM NaCl, 80 mM NaCl + 15 mg l−1 paclobutrazol and 15 mg l−1 paclobutrazol alone. The samples were collected on 60 and 80 days after sowing (DAS). NaCl stress inhibited the root and stem length, total leaf area, fresh weight (FW), dry weight (DW) and activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX). Plants treated with NaCl with paclobutrazol increased these parameters to a larger extent when compared to NaCl stressed plants. The results showed that the paclobutrazol significantly ameliorated the adverse effects of NaCl stress in V. unguiculata plants.  相似文献   

19.
The present study examines the effect of polyphenols extract of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) (APE) on high cholesterol diet fed rats (HCD). APE was orally administrated by gavage at doses of 10, 40 and 200 mg total phenolics/kg body weight of rats once a day for 28 days. At the end of four weeks, serum triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C), and markers of oxidative stress viz., malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the serum and liver of HCD and normal rats were assessed and compared. The results showed that administration of APE was significantly effective in decreasing the serum levels of TC, LDL-C and MDA, increasing the serum level of HDL-C and antioxidant capacity. In addition, oral gavage of APE could also increase the antioxidant capacity, CAT and GSH-Px activities in liver. These results suggested that APE exerted a high hypocholesterolemic and antioxidant activities, which might be characterized by a protective effect on cardiovascular health in vivo.  相似文献   

20.
The effect of different triazole compounds, viz., triadimefon (TDM) and hexaconazole (HEX) treatments on the antioxidant metabolism of Solenostemon rotundifolius Poir., Morton plants was investigated in the present study under pot culture. Plants were treated with TDM at 15 mg l−1 and HEX at 10 mg l−1 separately by soil drenching on 80, 110 and 140 days after planting (DAP). The plants were harvested randomly on 90, 120 and 150 DAP for determining the effect of both the triazoles on non-enzymatic antioxidant contents like ascorbic acid (AA), reduced glutathione (GSH) and -tocopherol (-toc), activities of antioxidant enzymes like superoxide dismutase (SOD) and ascorbate peroxidase (APX). All the analyses were made in leaf, stem and tubers of both control and treated plants. It was found that both these triazole compounds have profound effects on the antioxidant metabolism and caused an enhancement in both non-enzymatic and enzymatic antioxidant potentials under treatments. These results suggest that, the application of triazoles may be a useful tool to increase the antioxidant production in S. rotundifolius and thereby make it an economical food crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号