首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new strategy to synthesize organometallic oligomers is presented and consists of using the title diisocyanide and chelated metal fragments with bis(diphenylphosphine)alkanes. The title materials are synthesized by reacting the [M(dppe)(BF4)] and [M2(dppp)2](BF4)2 complexes (M = Cu, Ag; dppe = bis(diphenylphosphino)ethane, dppp = bis(diphenylphosphino)propane) with dmb and the Pd2-bonded d9-d9 Pd2(dmb)2Cl2 dimer with dppe or dppp. The model compounds [M(diphos)(CN-t-Bu)2]BF4 (M = Cu, Ag) and [Pd2(diphos)2(CN-t-Bu)2](ClO4)2 (diphos = dppe, dppp) have been prepared and characterized as well for comparison purposes. Three of the model compounds were also characterized by X-ray crystallography to establish the diphosphine chelating behavior. The materials are amorphous and have been characterized from the measurements of the intrinsic viscosity, DSC, TGA, and XRD, as well as their capacity for making stand-alone films. The intrinsic viscosity data indicate that the Cu and Pd2 materials are oligomeric in solution (approximately 8-9 units), while the Ag materials are smaller. For [[Cu(dppe)(dmb)]BF4]n, a glass transition is reproducibly observed at about 82 degrees C (DeltaCp = 0.43 J/(g deg)), which suggests that these materials are polymeric in the solid state. The Cu and Ag species are luminescent in the solid state at room temperature exhibiting lambda(max) and tau(e) (emission lifetime) around 480-550 nm and 18-48 micros, respectively, while the Pd2 species are not luminescent under these conditions. During the course of this study, the unsaturated [M2(dppp)2](BF4)2 starting materials (M = Cu, Ag) were prepared, one of which (M = Ag) was characterized by crystallography. The bridging behavior of the dppp ligand in this case contrasts with the chelating behavior seen for the saturated [Cu(dppp)(CN-t-Bu)2]BF4 complex.  相似文献   

2.
The 1:1 reaction between the d(9)-d(9) Pd(2)(dmb)(2)Cl(2) complex (dmb = 1,8-diisocyano-p-menthane) and the diphosphine ligands (diphos) bis(diphenylphosphino)butane (5, dppb), bis(diphenylphosphino)pentane (6, dpppen), bis(diphenylphosphino)hexane (7, dpph), and bis(diphenylphosphino)acetylene (8, dpa) in the presence of LiClO(4) leads to the [[Pd(2)(dmb)(2)(diphos)](ClO(4))(2)](n) polymers. These new materials are characterized by NMR ((1)H, (13)C, (31)P), IR, Raman, and UV-vis spectroscopies (466 < lambda(max)(dsigma-dsigma*) < 480 nm), by ATG, XRD, and DSC methods, and by the capacity to make stand-alone films. From the measurements of the intrinsic viscosity in acetonitrile, the M(n) ranges from 16000 to 18400 (12 to 16 units). The dinuclear model complex [Pd(2)(dmb)(2)(PPh(3))(2)](ClO(4))(2) (4) is prepared and investigated as well. The molecular dynamic of the title polymers in acetonitrile solution is investigated by means of (13)C spin-lattice relaxation time (T(1)) and nuclear Overhauser enhancement methods (NOE). The number of units determined by T(1)/NOE methods is 3 to 4 times less than that found from the measurements of intrinsic viscosity, and is due to flexibility in the polymer backbone, even for bridging ligands containing only one (dmb) or two C-C single bonds (dpa). During the course of this study, the starting material Pd(2)(dmb)(2)Cl(2) was reinvestigated after evidence for oligomers in the MALDI-TOF spectrum was noticed. In solution, this d(9)-d(9) species is a binuclear complex (T(1)/NOE). This result suggests that the structure of the title polymers in solution and in the solid state may not be the same either. Finally, these polymers are strongly luminescent in PrCN glasses at 77 K, and the photophysical data (emission lifetimes, 1.50 < tau(e) < 2.75 ns; quantum yields, 0.026 < Phi(e) < 0.17) are presented. X-ray data for [Pd(2)(dppe)(2)(dmb)(2)](PF(6))(4): monoclinic, space group C2/c, a = 24.3735 A, b = 21.8576(13) A, c = 18.0034(9) A, b = 119.775(1) degrees, V = 8325.0(8) A(3), Z = 4.  相似文献   

3.
The crystallographically characterized polymers [[Ag(dmb)(2)]Y](n) (Y = BF(4)(-), NO(3)(-), ClO(4)(-)) extensively dissociate in solution, contrarily to the Cu analogue, and common molecular weight determination techniques such as light scattering, osmometric, and intrinsic viscosity measurements fail to provide data allowing full characterization. Using pulsed NMR experiments, notably (13)C NMR T(1) (spin lattice relaxation time) and NOE (nuclear Overhauser enhancement) measurements on various ionic [[Ag(dmb)(2)]Y](n) materials (Y = BF(4)(-), NO(3)(-), ClO(4)(-)) and their related mononuclear [Ag (CN-t-Bu)(4)]Y salts in acetonitrile-d(3) (as comparative standards), the dipole-dipole spin lattice relaxation times (T(1)(DD)) of a selected quaternary (13)C probe are measured. These data allow us to extract the correlation times (tau(c)), which in turn permit us to estimate the volume of the tumbling species in solution. The comparison of the data between the [Ag(dmb)(2)(+)](n) and Ag(CN-t-Bu)(4)(+) species indicates the oligomeric nature of the former species, where the average number of Ag(dmb)(2)(+) approximately 8 (M(n) approximately 4000-5000).  相似文献   

4.
Chen YD  Zhang LY  Shi LX  Chen ZN 《Inorganic chemistry》2004,43(23):7493-7501
Reaction of Pt(diimine)(edt) (edt = 1,2-ethanedithiolate) with M(2)(dppm)(2)(MeCN)(2)(2+) (dppm = bis(diphenylphosphino)methane) gave heterotrinuclear complexes [PtCu(2)(edt)(mu-SH)(dppm)(3)](ClO(4)) (11) and [PtCu(2)(diimine)(2)(edt)(dppm)(2)](ClO(4))(2) (diimine = 2,2'-bpyridine (bpy), 12; 4,4'-dibutyl-2,2'-bipyridine (dbbpy), 13; phenanthroline (phen), 14; 5-bromophenanthroline (brphen), 15) when M = Cu(I). The reaction, however, afforded tetra- and trinuclear complexes [Pt(2)Ag(2)(edt)(2)(dppm)(2)](SbF(6))(2) (17) and [PtAu(2)(edt)(dppm)(2)](SbF(6))(2) (21) when M = Ag(I) and Au(I), respectively. The complexes were characterized by elemental analyses, electrospray mass spectroscopy, (1)H and (31)P NMR, IR, and UV-vis spectrometry, and X-ray crystallography for 14, 17, and 18. The Pt(II)Cu(I)(2) heterotrinuclear complexes 11-15 exhibit photoluminescence in the solid states at 298 K and in the frozen acetonitrile glasses at 77 K. It is likely that the emission originates from a ligand-to-metal charge transfer (dithiolate-to-Pt) (3)[p(S) --> d(Pt)] transition for 11 and from an admixture of (3)[d(Cu)/p(S)-pi(diimine)] transitions for 12-16. The Pt(II)(2)Ag(I)(2) heterotetranuclear complexes 17 and 18 are nonemissive in the solid states and in solutions at 298 K but show photoluminescence at 77 K. The Pt(II)Au(I)(2) heterotrinuclear complexes 19-21, however, are luminescent at room temperature in the solid state and in solution. Compounds 19 and 20 afford negative solvatochromism associated with a charge transfer from an orbital of a mixed metal/dithiolate character to a diimine pi orbital.  相似文献   

5.
A series of homodinuclear platinum(II) complexes containing bridging chalcogenido ligands, [Pt(2)(mu-E)(2)(P empty set N)(4)] (P empty set N=dppy, E=S (1), Se (2); P empty set N=tBu-dppy, E=S (3)) (dppy=2-(diphenylphosphino)pyridine, tBu-dppy=4-tert-butyl-2-(diphenylphosphino)pyridine) have been synthesized and characterized. The nucleophilicity of the [Pt(2)E(2)] unit towards a number of d(10) metal ions and complexes has been demonstrated through the successful isolation of a number of novel heteropolynuclear platinum(II)-copper(I), -silver(I), and -gold(I) complexes: [[Pt(2)(mu(3)-E)(2)(dppy)(4)](2)Ag(3)](PF(6))(3) (E=S (4); Se (5)) and [Pt(2)(dppy)(4)(mu(3)-E)(2)M(2)(dppm)]X(2) (E=S, M=Ag, X=BF(4) (6); E=S, M=Cu, X=PF(6) (7); E=S, M=Au, X=PF(6) (8); E=Se, M=Ag, X=PF(6) (9); E=Se, M=Au, X=PF(6) (10)). Some of them display short metal.metal contacts. These complexes have been found to possess interesting luminescence properties. Through systematic comparison studies, the emission origin has been probed.  相似文献   

6.
Reactions of Pt(diimine)(tdt) (tdt =3,4-toluenedithiolate) with [M(2)(dppm)(2)(MeCN)(2)](2+) (M = Cu(I) or Ag(I), dppm = bis(diphenylphosphino)methane) gave heterotrinuclear complexes [PtCu(2)(tdt)(mu-SH)(dppm)(3)](ClO(4)) (1) and [PtCu(2)(diimine)(2)(tdt)(dppm)(2)](ClO(4))(2) (diimine = 2,2'-bpyridine (bpy) 2; 4,4'-dimethyl-2,2'-bipyridine (dmbpy) 3; phenanthroline (phen) 4, 5-bromophenanthroline (Brphen) 5) for M = Cu(I), but [PtAg(2)(tdt)(mu-SH)(dppm)(3)](SbF(6)) (6) and [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (diimine = bpy 7; dmbpy 8; phen 9; Brphen 10) for M = Ag(I). While the complexes [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (7-10) result from linkage of Pt(diimine)(tdt) and [M(2)(dppm)(2)(MeCN)(2)](2+) by tdt sulfur donors, formation of [PtCu(2)(diimine)(2)(tdt)(dppm)(2)](ClO(4))(2) (2-5) is related to rupture of metal-ligand bonds in the metal components and recombination between the ligands and the metal atoms by self-assembly. The formation of 1 and 6 is involved not only in dissociation and recombination of the metal components, but also in disruption of C-S bonds in the dithiolate (tdt). The dithiolate tdt adopts a chelating and bridging coordination mode in anti conformation for [PtCu(2)(diimine)(2)(tdt)(dppm)(2)](ClO(4))(2) (2-5), whereas there is the syn conformation for other complexes. Compounds 1 and 6 represent sparse examples of mu-SH-bridged heterotrinuclear Pt(II)M(I)(2) complexes, in which Pt(II)-M(I) centers are bridged by dppm and sulfur donors of tdt, whereas M(I)-M(I) (M = Cu for 1; Ag for 6) centers are linked by dppm and the mu-SH donor. The (31)P NMR spectra show typical platinum satellites (J(Pt-P) = 1450-1570 Hz) for 1-6 and Ag-P coupling for Pt(II)-Ag(I) (J(Ag-P) = 350-450 Hz) complexes 6-10. All of the complexes show intense emission in the solid state and in frozen glasses at 77 K. The complexes [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (7-10) also afford emission in fluid acetonitrile solutions at room temperature. Solid-state emission lifetimes at room temperature are in the microsecond range. It is revealed that emission energies of the trinuclear heterometallic complexes [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (7-10) exhibit a remarkable blue shift (0.10-0.35 eV) relative to those of the precursor compounds Pt(diimine)(tdt). The crystal structures of 1, 2, 4, 6, 8, and 9 were determined by X-ray crystallography.  相似文献   

7.
When the ligand 1,4,5-triazanaphthalene (abbreviated as tan) is reacted with Cu(II) BF(4)(-) and ClO(4)(-) salts, a variety of mononuclear compounds has been found, all with the [Cu(tan)(4)] unit and varying amounts of weakly coordinating axial ligands and lattice solvents. Reproducible compounds formed include two purple compounds, analyzing as [Cu(tan)(4)](ClO(4))(2)(CH(3)OH)(2)(H(2)O) (1) and [Cu(tan)(4)](BF(4))(2)(CH(3)OH)(1.5)(H(2)O) (3), and two blue compounds, analyzing as [Cu(tan)(4)](ClO(4))(2)(H(2)O)(2) (2) and [Cu(tan)(4)](2)(BF(4))(2)(H(2)O)(2) (4). Upon standing at room temperature, red-coloured, mixed-valence dinuclear-based 3D coordination polymers are formed by conversion of the purple/blue products, of which [Cu(2)(tan)(4)](n)(BF(4))(3n) (5) and the isomorphic methanol-water adduct [Cu(tan)(4)](n)(BF(4))(3n)(CH(3)OH)(n)(H(2)O)(5n) (5A) are presented in this paper. In addition a fully reduced dinuclear Cu(I) compound of formula [Cu(2)(tan)(3)(ClO(4))(2)] (7) has been observed, and structurally characterized, as a rare three-blade propeller structure, with a Cu-Cu distance of 2.504 ?.  相似文献   

8.
Condensation of Ph(2)PH and paraformaldehyde with 2-amino-7-methyl-1,8-naphthyridine gave the new flexible tridentate ligand 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L). Reaction of L with [Cu(CH(3)CN)(4)]BF(4) and/or different ancillary ligands in dichloromethane afforded N,P chelating or bridging luminescent complexes [(L)(2)Cu(2)](BF(4))(2), [(micro-L)(2)Cu(2)(PPh(3))(2)](BF(4))(2) and [(L)Cu(CNN)]BF(4) (CNN = 6-phenyl-2,2'-bipyridine), respectively. Complexes [(L)(2)Pt]Cl(2), [(L)(2)Pt](ClO(4))(2) and [(L)Pt(CNC)]Cl (CNC = 2,6-biphenylpyridine) were obtained from the reactions of Pt(SMe(2))(2)Cl(2) or (CNC)Pt(DMSO)Cl with L. The crystal structures and photophysical properties of the complexes are presented.  相似文献   

9.
The reaction of the neutral binuclear complexes [(R(F))(2)Pt(μ-PPh(2))(2)M(phen)] (phen = 1,10-phenanthroline, R(F) = C(6)F(5); M = Pt, 1; M = Pd, 2) with AgClO(4) or [Ag(OClO(3))(PPh(3))] affords the trinuclear complexes [AgPt(2)(μ-PPh(2))(2)(R(F))(2)(phen)(OClO(3))] (7a) or [AgPtM(μ-PPh(2))(2)(R(F))(2)(phen)(PPh(3))][ClO(4)] (M = Pt, 8; M = Pd, 9), which display an "open-book" type structure and two (7a) or one (8, 9) Pt-Ag bonds. The neutral diphosphine complexes [(R(F))(2)Pt(μ-PPh(2))(2)M(P-P)] (P-P = 1,2-bis(diphenylphosphino)methane, dppm, M = Pt, 3; M = Pd, 4; P-P = 1,2-bis(diphenylphosphino)ethane, dppe, M = Pt, 5; M = Pd, 6) react with AgClO(4) or [Ag(OClO(3))(PPh(3))], and the nature of the resulting complexes is dependent on both M and the diphosphine. The dppm Pt-Pt complex 3 reacts with [Ag(OClO(3))(PPh(3))], affording a silver adduct 10 in which the Ag atom interacts with the Pt atoms, while the dppm Pt-Pd complex 4 reacts with [Ag(OClO(3))(PPh(3))], forming a 1:1 mixture of [AgPdPt(μ-PPh(2))(2)(R(F))(2)(OClO(3))(dppm)] (11), in which the silver atom is connected to the Pt-Pd moiety through Pd-(μ-PPh(2))-Ag and Ag-P(k(1)-dppm) interactions, and [AgPdPt(μ-PPh(2))(2)(R(F))(2)(OClO(3))(PPh(3))(2)][ClO(4)] (12). The reaction of complex 4 with AgClO(4) gives the trinuclear derivative 11 as the only product. Complex 11 shows a dynamic process in solution in which the silver atom interacts alternatively with both Pd-μPPh(2) bonds. When P-P is dppe, both complexes 5 and 6 react with AgClO(4) or [Ag(OClO(3))(PPh(3))], forming the saturated complexes [(PPh(2)C(6)F(5))(R(F))Pt(μ-PPh(2))(μ-OH)M(dppe)][ClO(4)] (M = Pt, 13; Pd, 14), which are the result of an oxidation followed by a PPh(2)/C(6)F(5) reductive coupling. Finally, the oxidation of trinuclear derivatives [(R(F))(2)Pt(II)(μ-PPh(2))(2)Pt(II)(μ-PPh(2))(2)Pt(II)L(2)] (L(2) = phen, 15; L = PPh(3), 16) by AgClO(4) results in the formation of the unsaturated 46 VEC complexes [(R(F))(2)Pt(III)(μ-PPh(2))(2)Pt(III)(μ-PPh(2))(2)Pt(II)L(2)][ClO(4)](2) (17 and 18, respectively) which display Pt(III)-Pt(III) bonds.  相似文献   

10.
Redox addition of the Pd-Pd bond in [Pd(2)Cl(2)(dppm)(2)] across S-S or Se-Se bond in [Pt(X(4)-kappa(2)X(1),X(4))(P-P)] (X = S, Se; P-P = dppe or 2 x PPh(3); dppm = bis(diphenylphosphino)methane, dppe = bis(diphenylphosphino)ethane) leads to the isolation of [PtPd(2)(mu(3)-X)(2)(P-P)(dppmX-kappa(2)X,P(4))(2)](2+) and represents an atom-economy process that converts chalcogen-rich complexes to heterometallic chalcogenide aggregates. Activation of the [PtX(4)] ring is achieved by tetrachalcogenide reduction and dual oxidation of palladium and phosphine.  相似文献   

11.
The dinuclear gold(I) dithiophosphonate complex, [Au(2)(dtp)(2)] (1), where dtp = [S(2)P(R)(OR')](-) with R = p-C(6)H(4)OCH(3); R'= c-C(5)H(9), has been synthesized and its reaction studied with the phosphine ligands PPh(3) and Ph(2)P(CH(2))(n)PPh(2) (n = 1-4). Compound 1 contains two gold atoms homobridged by the anionic dithiophosphonate ligand, forming an eight-membered ring complex in a chair form. After the reaction of 1 with diphosphine ligands, the dinuclear open-ring complexes Au(2)(dppm)(dtp)(2) (2), Au(2)(dppe)(dtp)(2) (3), Au(2)(dppp)(dtp)(2) (4), Au(2)(dppb)(dtp)(2) (5) were formed (dppm = diphenylphosphinomethane; dppe = diphenylphosphinoethane; dppp = diphenylphosphinopropane; dppb = diphenylphosphinobutane). The reaction with dppm is stoichiometry-dependent. Thus, when 1 reacts with 2 equiv of dppm, the ionic complex [Au(2)(dppm)(2)(dtp)]dtp forms. This dtp counterion was exchanged with tetrafluoroborate to yield [Au(2)(dppm)(2)(dtp)]BF(4), the crystallization of which afforded two interconvertible isomers, 6-yellow and 7-white. Reaction of 1 with PPh(3) affords the tetracoordinate mononuclear complex [Au(dtp)(PPh(3))(2)] (8). The molecular structures of 1-8 were confirmed by X-ray crystallography and show multiple coordination modes and geometries. The crystal structures of 1 and its reaction products with dppm (2, 6, 7) show short intramolecular Au.Au aurophilic bonding interactions of 2.95-3.10 A while no intermolecular interactions were discernible. However, reaction products of 1 with longer-chain Ph(2)P(CH(2))(n)PPh(2) ligands, n = 2-4, exhibit structures that lack both intra- and intermolecular Au.Au interactions.  相似文献   

12.
A self-assembly of AgClO(4) with a Schiff-base ligand N,N'-bis(pyridin-2-ylmethylene)benzene-1,4-diamine (1) gave a 1D zigzag polymeric array [[Ag(2)(C(18)H(14)N(4))(2)](ClO(4))(2)(CH(3)CN)](n) (3), while the self-assembly of AgClO(4) with 3,3'-dimethyl-N,N'-bis(pyridin-2-ylmethylene)biphenyl-4,4'-diamine (2) afforded the molecular rectangle [[Ag(2)(C(26)H(22)N(4))(2)](ClO(4))(2)] (4). The structures of 3 and 4 were characterized by single-crystal X-ray diffraction analysis. Structural data for 3 indicate that the Ag(I) ion is coordinated by two ligands of 1 in a distorted tetrahedral fashion thereby leading to a 1D zigzag polymeric array. The zigzag chains are interdigitated with weak pi-pi stacking interactions. The structure of 4 consists of a discrete molecular rectangle where the silver atom has a distorted square-planar coordination with the pyridyl ligands and azomethine nitrogen atoms of 2. An intramolecular pi-pi interaction between the phenyl rings of adjacent Schiff-base 2 functions to stabilize the rectangular architecture. The Ag(I)-Schiff-base coordination polymer 3 is not stable in solution. The degradation and reorganization of 3 to form a [2 x 2] grid architecture [[Ag(4)(C(26)H(22)N(4))(4)](ClO(4))(4)] (3g) was supported in a FAB-MS study. The rectangular structure of 4 remains intact in solution at ambient temperature. The complexes 3g and 4 exhibit unusual luminescence behavior in solution at room temperature with significantly red-shifted emission in the visible region.  相似文献   

13.
The self-assembly of complex cationic structures by combination of cis-blocked square planar palladium(II) or platinum(II) units with bis(pyridyl) ligands having bridging amide units has been investigated. The reactions have yielded dimers, molecular triangles, and polymers depending primarily on the geometry of the bis(pyridyl) ligand. In many cases, the molecular units are further organized in the solid state through hydrogen bonding between amide units or between amide units and anions. The molecular triangle [Pt(3)(bu(2)bipy)(3)(mu-1)(3)](6+), M = Pd or Pt, bu(2)bipy = 4,4'-di-tert-butyl-2,2'-bipyridine, and 1 = N-(4-pyridinyl)isonicotinamide, stacks to give dimers by intertriangle NH.OC hydrogen bonding. The binuclear ring complexes [[Pd(LL)(mu-2)](2)](CF(3)SO(3))(4), LL = dppm = Ph(2)PCH(2)PPh(2) or dppp = Ph(2)P(CH(2))(3)PPh(2) and 2 = NC(5)H(4)-3-CH(2)NHCOCONHCH(2)-3-C(5)H(4)N, form transannular hydrogen bonds between the bridging ligands. The complexes [[Pd(LL)(mu-3)](2)](CF(3)SO(3))(4), LL = dppm or dppp, L = PPh(3), and 3 = N,N'-bis(pyridin-3-yl)-pyridine-2,6-dicarboxamide, and [[Pd(LL)(mu-4)](2)](CF(3)SO(3))(4), LL = dppm, dppp, or bu(2)bipy, L = PPh(3), and 4 = N,N'-bis(pyridin-4-yl)-pyridine-2,6-dicarboxamide, are suggested to exist as U-shaped or square dimers, respectively. The ligands N,N'-bis(pyridin-3-yl)isophthalamide, 5, or N,N'-bis(pyridin-4-yl)isophthalamide, 6, give the complexes [[Pd(LL)(mu-5)](2)](CF(3)SO(3))(4) or [[Pd(LL)(mu-6)](2)](CF(3)SO(3))(4), but when LL = dppm or dppp, the zigzag polymers [[Pd(LL)(mu-6)](x)](CF(3)SO(3))(2)(x) are formed. When LL = dppp, a structure determination shows formation of a laminated sheet structure by hydrogen bonding between amide NH groups and triflate anions of the type NH-OSO-HN.  相似文献   

14.
The reactions of four flexible tetradentate ligands, 1,3-bis(2-pyridylthio)propane (L1), 1,4-bis(2-pyridylthio)butane (L2), 1,5-bis(2-pyridylthio)pentane (L3) and 1,6-bis(2-pyridylthio)hexane (L4) with AgX (X = BF4-, ClO4-, PF6-, or CF3SO3-) lead to the formation of seven new complexes: [AgL1(BF4)]2 (1), [[AgL2](ClO4)]infinity (2), [[AgL2(CH3CN)](PF6)]infinity (3), [[AgL3](BF4)(CHCl3)]2 (4), [[AgL3(CF3SO3)](CH3OH)(0.5)]infinity (5), [[Ag2L4(2)](BF4)2]infinity (6), and [[AgL4](PF6)]infinity (7), which have been characterized by elemental analyses, IR spectroscopy, and X-ray crystallography. Single-crystal X-ray analyses show that complexes 1 and 4 possess dinuclear macrometallacyclic structures, and complexes 2, 3 and 5-7 take chain structures. In all the complexes, the nitrogen atoms of ligands preferentially coordinate to silver atoms to form normal coordination bonds, while the sulfur atoms only show weak interactions with silver atoms and the intermolecular AgS weak contacts connect the low-dimensional complexes into high-dimensional supramolecular networks. Additional weak interactions, such as pi-pi stacking, F...F weak interactions, Ag...O contacts or C-H...O hydrogen bonds, also help to stabilize the crystal structures. It was found that the parity of the -(CH2)n- spacers (n = 3-6) affect the orientation of the two terminal pyridyl rings, thereby significantly influence the framework formations of these complexes. The coordination features of ligands and their conformation changes between free and coordination states have been investigated by DFT calculations.  相似文献   

15.
Silver(I) coordination complexes with the versatile and biomimetic ligands 1,2,4-triazolo[1,5-a]pyrimidine (tp), 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp) and 7-amine-1,2,4-triazolo[1,5-a]pyrimidine (7atp) all feature dinuclear [Ag(2)(μ-tp)(2)](2+) building units (where tp is a triazolopyrimidine derivative), which are the preferred motif, independently of the counter-anion used. According to AIM (atoms in molecules) and ELF (electron localization function) analyses, this fact is due to the great stability of these dinuclear species. The complexes structures range from the dinuclear entities [Ag(2)(μ-tp)(2)(CH(3)CN)(4)](BF(4))(2) (1), [Ag(2)(μ-tp)(2)(CH(3)CN)(4)](ClO(4))(2) (2), [Ag(2)(μ-7atp)(2)](ClO(4))(2) (3) and [Ag(2)(μ-dmtp)(2)(CH(3)CN)](PF(6))(ClO(4)) (4) over the 1D polymer chain [Ag(2)(μ-CF(3)SO(3))(2)(μ-dmtp)(2)](n) (5) to the 3D net {[Ag(2)(μ(3)-tp)(2)](PF(6))(2)·~6H(2)O}(n) (6) with NbO topology.  相似文献   

16.
A series of picolyl-substituted NHC-bridged triangular complexes of Ag(I) and Cu(I) were synthesized upon reaction of the corresponding ligand precursors, [Him(CH(2)py)(2)]BF(4) (1a), [Him(CH(2)py-3,4-(OMe)(2))(2)]BF(4) (1b), [Him(CH(2)py-3,5-Me(2)-4-OMe)(2)]BF(4) (1c), [Him(CH(2)py-6-COOMe)(2)]BF(4) (1d), and [H(S)im(CH(2)py)(2)]BF(4) (1e), with Ag(2)O and Cu(2)O, respectively. Complexes [Cu(3)(im(CH(2)py)(2))(3)](BF(4))(3) (2a), [Cu(3)(im(CH(2)py-3,4-(OMe)(2))(2))(3)](BF(4))(3) (2b), [Cu(3)(im(CH(2)py-3,5-Me(2)-4-OMe)(2))(3)](BF(4))(3), (2c), [Ag(3)(im(CH(2)py-3,4-(OMe)(2))(2))(3)](BF(4))(3), (3b), [Ag(3)(im(CH(2)py-3,5-Me(2)-4-OMe)(2))(3)](BF(4))(3) (3c), [Ag(3)(im(CH(2)py-6-COOMe)(2))(3)](BF(4))(3) (3d), and [Ag(3)((S)im(CH(2)py)(2))(3)](BF(4))(3) (3e) were easily prepared by this method. Complex 2e, [Cu(3)((S)im(CH(2)py)(2))(3)](BF(4))(3), was synthesized by a carbene-transfer reaction of 3e, [Ag(3)((S)im(CH(2)py)(2))(3)](BF(4))(3), with CuCl in acetonitrile. The ligand precursor 1d did not react with Cu(2)O. All complexes were fully characterized by NMR, UV-vis, and luminescence spectroscopies and high-resolution mass spectrometry. Complexes 2a-2c, 2e, and 3b-3e were additionally characterized by single-crystal X-ray diffraction. Each metal complex contains a nearly equilateral triangular M(3) core wrapped by three bridging NHC ligands. In 2a-2c and 2e, the Cu-Cu separations are short and range from 2.4907 to 2.5150 ?. In the corresponding Ag(I) system, the metal-metal separations range from 2.7226 to 2.8624 ?. The Cu(I)-containing species are intensely blue photoluminescent at room temperature both in solution and in the solid state. Upon UV excitation in CH(3)CN, complexes 2a-2c and 2e emit at 459, 427, 429, and 441 nm, whereas in the solid state, these bands move to 433, 429, 432, and 440 nm, respectively. As demonstrated by (1)H NMR spectroscopy, complexes 3b-3e are dynamic in solution and undergo a ligand dissociation process. Complexes 3b-3e are weakly photoemissive in the solid state.  相似文献   

17.
Bu XH  Xie YB  Li JR  Zhang RH 《Inorganic chemistry》2003,42(23):7422-7430
In our efforts to systematically investigate the effects of the linker units of flexible ligands and other factors on the structures of Ag(I) complexes with thioethers, five new flexible pyridyl thioether ligands, bis(2-pyridylthio)methane (L(1)()), 1,3-bis(2-pyridylthio)propane (L(3)()), 1,4-bis(2-pyridylthio)butane (L(4)), 1,5-bis(2-pyridylthio)pentane (L(5)), and 1,6-bis(2-pyridylthio)hexane (L(6)), have been designed and synthesized, and the reactions of these ligands with Ag(I) salts under varied conditions (varying the solvents and counteranions) lead to the formation of eight novel metal-organic coordination architectures from di- and trinuclear species to two-dimensional networks: [Ag(3)(L(1)())(2)(ClO(4))(2)](ClO(4)) (1), [[AgL(3)](ClO(4))]( infinity ) (2), [[Ag(2)(L(4))(2)](ClO(4))(2)(CHCl(3))]( infinity ) (3), [[AgL(4)](ClO(4))(C(3)H(6)O)]( infinity ) (4), [[Ag(2)L(4)](NO(3))(2)]( infinity ) (5), [Ag(2)L(4)()(CF(3)SO(3))(2)]( infinity ) (6), [[AgL(5)](ClO(4))(CHCl(3))](2) (7), and [[AgL(6)()](ClO(4))]( infinity ) (8). All the structures were established by single-crystal X-ray diffraction analysis. The coordination modes of these ligands were found to vary from N,N-bidentate to N,N,S-tridentate to N,N,S,S-tetradentate modes, while the Ag(I) centers adopt two-, three-, or four-coordination geometries with different coordination environments. The structural differences of 1, 2, 3, 7, and 8 indicate that the subtle variations on the spacer units can greatly affect the coordination modes of the terminal pyridylsulfanyl groups and the coordination geometries of Ag(I) ions. The structural differences of 3 and 4 indicate that solvents also have great influence on the structures of Ag(I) complexes, and the differences between 3, 5, and 6 show counteranion effects in polymerization of Ag(I) complexes. The influences of counterions and solvents on the frameworks of these complexes are probably based upon the flexibility of ligands and the wide coordination geometries of Ag(I) ions. The results of this study indicate that the frameworks of the Ag(I) complexes with pyridyl dithioethers could be adjusted by ligand modifications and variations of the complex formation conditions.  相似文献   

18.
The monohapto neutral 2-(diphenylphosphino)aniline (PNH(2)) complexes [Au(C(6)F(5))(2)X(PNH(2))] (X = C(6)F(5) (1), Cl (2)) have been obtained from [Au(C(6)F(5))(3)(tht)] or [Au(C(6)F(5))(2)(micro-Cl)](2) and PNH(2), and the cationic [Au(C(6)F(5))(2)(PNH(2))]ClO(4) (3) has been similarly prepared from [Au(C(6)F(5))(2)(OEt(2))(2)]ClO(4) and PNH(2) or from 2 and AgClO(4). The neutral amido complex [Au(C(6)F(5))(2)(PNH)] (4) can be obtained by deprotonation of 3 with PPN(acac) (acac = acetylacetonate) or by treatment of the chloro complex 2 with Tl(acac). It reacts with [Ag(OClO(3))(PPh(3))] or [Au(OClO(3))(PPh(3))] to give the dinuclear species [Au(C(6)F(5))(2)[PNH(MPPh(3))]]ClO(4) (M = Ag (5), Au (6)). The latter can also be obtained by reaction of equimolar amounts of 3 and [Au(acac)(PPh(3))]; when the molar ratio of the same reagents is 1:2, the trinuclear cationic complex [Au(C(6)F(5))(2)[PN(AuPPh(3))(2)]]ClO(4) (7) is obtained. The crystal structures of complexes 2-4 and 7 have been established by X-ray crystallography; the last-mentioned displays an unusual Au(I)-Au(III) interaction.  相似文献   

19.
This paper describes how to determine molecular weights of coordination and organometallic polymers (or rather oligomers) in solution using spin-lattice relaxation time (T1) and Nuclear Overhauser Enhancement constant (ηNOE) measurements. The methodology is explained using simple organometallic-complexes such as M(CN-t-Bu)4+ complexes (M = Cu, Ag). Very good results are obtained for oligomers that exhibit a rigid structure. Conversely, very poor results are extracted when the materials show flexible chains in the backbone. The typical examples for rigid and flexible oligomers are the {Ag(dmb)2+}n (dmb = 1,8-diisocyano-p-menthane), and {Pd2(dmb)2(diphos)2+}n (diphos = dppa, dppb, dpppent, and dpph) as well as {Pd2(diphos)2(dmb)2+}n (diphos = dppe, dppr, and dppp R ; R = O(CH2)2O-naphthyl), respectively.  相似文献   

20.
Reaction of 1,3-bis(2-pyridinylmethyl)-1H-imidazolium tetrafluoroborate, [H(pyCH(2))(2)im]BF(4), with silver oxide in dichloromethane readily yields [Ag((pyCH(2))(2)im)(2)]BF(4), 1.BF(4)(). 1.BF(4) is converted to the analogous Au(I)-containing species, [Au((pyCH(2))(2)im)(2)]BF(4), 3, by a simple carbene transfer reaction in dichloromethane. Further treatment with two equivalents of AgBF(4) produces the trimetallic species [AuAg(2)((pyCH(2))(2)im)(2)(NCCH(3))(2)](BF(4))(3), 4, which contains two silver ions each coordinated to the pyridine moieties on one carbene ligand and to an acetonitrile molecule in a T-shaped fashion. Monometallic [Ag((py)(2)im)(2)]BF(4), 5, and [Au((py)(2)im)(2)]BF(4), 6, are made analogously to 1.BF(4) and 3 starting from 1,3-bis(2-pyridyl)-imidazol-2-ylidene tetrafluoroborate, [H(py)(2)im]BF(4). Addition of excess AgBF(4) to 6 yields the helical mixed-metal polymer, ([AuAg((py)(2)im)(2)(NCCH(3))](BF(4))(2))(n), 7 which contains an extended Au(I)-Ag(I) chain with short metal-metal separations of 2.8359(4) and 2.9042(4) A. Colorless, monometallic [Hg((pyCH(2))(2)im)(2)](BF(4))(2), 8, is easily produced by refluxing [H(pyCH(2))(2)im)]BF(4) with Hg(OAc)(2) in acetonitrile. The related quinolyl-substituted imidazole, [H(quinCH(2))(2)im]PF(6), is produced analogously to [H(pyCH(2))(2)im]BF(4). [Hg((quinCH(2))(2)im)(2)](PF(6))(2), 9, is isolated in good yield as a white solid from the reaction of Hg(OAc)(2) and [H(quinCH(2))(2)im]PF(6). The reaction of [H(quinCH(2))(2)im]PF(6) with excess Ag(2)O produces the triangulo-cluster [Ag(3)((quinCH(2))(2)im)(3)](PF(6))(3), 11. All of these complexes were studied by (1)H NMR spectroscopy, and complexes 3-9 were additionally characterized by X-ray crystallography. These complexes are photoluminescent in the solid state and in solution with spectra that closely resemble those of the ligand precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号