首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
A series of picolyl-substituted NHC-bridged triangular complexes of Ag(I) and Cu(I) were synthesized upon reaction of the corresponding ligand precursors, [Him(CH(2)py)(2)]BF(4) (1a), [Him(CH(2)py-3,4-(OMe)(2))(2)]BF(4) (1b), [Him(CH(2)py-3,5-Me(2)-4-OMe)(2)]BF(4) (1c), [Him(CH(2)py-6-COOMe)(2)]BF(4) (1d), and [H(S)im(CH(2)py)(2)]BF(4) (1e), with Ag(2)O and Cu(2)O, respectively. Complexes [Cu(3)(im(CH(2)py)(2))(3)](BF(4))(3) (2a), [Cu(3)(im(CH(2)py-3,4-(OMe)(2))(2))(3)](BF(4))(3) (2b), [Cu(3)(im(CH(2)py-3,5-Me(2)-4-OMe)(2))(3)](BF(4))(3), (2c), [Ag(3)(im(CH(2)py-3,4-(OMe)(2))(2))(3)](BF(4))(3), (3b), [Ag(3)(im(CH(2)py-3,5-Me(2)-4-OMe)(2))(3)](BF(4))(3) (3c), [Ag(3)(im(CH(2)py-6-COOMe)(2))(3)](BF(4))(3) (3d), and [Ag(3)((S)im(CH(2)py)(2))(3)](BF(4))(3) (3e) were easily prepared by this method. Complex 2e, [Cu(3)((S)im(CH(2)py)(2))(3)](BF(4))(3), was synthesized by a carbene-transfer reaction of 3e, [Ag(3)((S)im(CH(2)py)(2))(3)](BF(4))(3), with CuCl in acetonitrile. The ligand precursor 1d did not react with Cu(2)O. All complexes were fully characterized by NMR, UV-vis, and luminescence spectroscopies and high-resolution mass spectrometry. Complexes 2a-2c, 2e, and 3b-3e were additionally characterized by single-crystal X-ray diffraction. Each metal complex contains a nearly equilateral triangular M(3) core wrapped by three bridging NHC ligands. In 2a-2c and 2e, the Cu-Cu separations are short and range from 2.4907 to 2.5150 ?. In the corresponding Ag(I) system, the metal-metal separations range from 2.7226 to 2.8624 ?. The Cu(I)-containing species are intensely blue photoluminescent at room temperature both in solution and in the solid state. Upon UV excitation in CH(3)CN, complexes 2a-2c and 2e emit at 459, 427, 429, and 441 nm, whereas in the solid state, these bands move to 433, 429, 432, and 440 nm, respectively. As demonstrated by (1)H NMR spectroscopy, complexes 3b-3e are dynamic in solution and undergo a ligand dissociation process. Complexes 3b-3e are weakly photoemissive in the solid state.  相似文献   

2.
Reaction of the imidazolium N-heterocyclic carbene precursor containing a methyl-substituted pyridyl functionality [HCH3im(CH3py)]PF6, 1, with Ag2O produces the homoleptic Ag(I) complex, [Ag(CH3im(CH3py))2]PF6, 2. In a simple carbene transfer reaction the analogous Au(I) species, [Au(CH3im(CH3py))2]PF6, 3, is formed by treatment of 2 with Au(tht)Cl in dichloromethane. Both 2 and 3 are structurally similar with nearly linearly coordinated NHC ligands. The methyl group appended to the pyridyl ring inhibits rotation of the pyridyl group at room temperature. Addition of AgBF4 to a hot propionitrile solution of 3 followed by crystallization with diethyl ether yields the one-dimensional coordination polymer, {[AuAg(CH3im(CH3py))2(NCCH2CH3)](BF4)2}n, 4, which contains Au-Ag separations of 2.9845(5) and 2.9641(5) A with intermetallic angles of 167.642(14) degrees and 162.081(9) degrees. This material is intensely luminescent in the solid state and exhibits an emission band at 453 nm (lambdaex=350 nm). Nearly colorless [Pd(CH3im(CH3py))2Cl]PF6, 5, is produced upon treatment of 2 with PdCl2(NCC6H5)2. The Pd(II) center in 5 is coordinated to one NHC ligand in a chelate fashion, while the second NHC is bound solely through the carbon center. The X-ray crystal structures of 1-5 are reported.  相似文献   

3.
The N-heterocyclic carbene (NHC) precursor, 1-methyl-3-(2-pyridinylmethyl)-1H-imidazolium tetrafluoroborate, [HCH3im(CH2py)]BF4, reacted with AgBF4 in the presence of aqueous NaOH to produce the silver complex [Ag(CH3im(CH2py))2]BF4 (1) which was then reacted with Au(tht)Cl to form the corresponding gold(I) complex, [Au(CH3im(CH2py))2]BF4 (2). Complex 2 reacted with 1 equiv of AgBF4 to produce the mixed-metal species [AuAg(CH3im(CH2py))2](BF4)2 (3). The reaction of 2 with 1 equiv of Au(tht)Cl followed by metathesis with NaBF4 produces the dimetallic gold complex [Au2(CH3im(CH2py))2](BF4)2 (4). The reaction of [Ag(CH3im(CH2py))2]BF4 (1) with 1 equiv of AgBF4 produces the trinuclear [Ag3(CH3im(CH2py))3(NCCH3)2](BF4)3 (5) complex, which appears to dissociate into a dimetallic complex in solution. Complexes 1-5 were characterized by 1H NMR, 13C NMR, UV-vis, luminescence spectroscopy, elemental analysis, mass spectrometry, and X-ray crystallography. The CH3im(CH2py) ligands in 3 are arranged in a head-to-head fashion spanning a Au-Ag separation of 3.0318(5) A with the carbene portion of the ligand remaining coordinated to the Au(I) center. In 4, the ligands are arranged in a head-to-tail fashion with an Au-Au separation of 3.1730(5) A. In 5, the ligands bridge the nearly symmetrical Ag3 triangular core with short Ag-Ag separations of 2.7765(8), 2.7832(8), and 2.7598(8) A. All of these complexes, including the ligand precursor, are intensely luminescent in solution and the solid state.  相似文献   

4.
Reaction of 1,3-bis(2-pyridinylmethyl)-1H-imidazolium salt, [H(pyCH(2))(2)im]X (X = BF(4)(-) or Cl(-)), with silver oxide in acetonitrile readily yields yellow-brown [((pyCH(2))(2)im)(2)Ag]X, 1.BF(4) or 1.Cl. The chloride salt crystallizes with 3.650 A intermolecular Ag...Ag interactions while 1.BF(4) shows no short intermolecular interaction. Addition of excess Ag(BF(4)) produces the homoleptic carbene bridged trimetallic species, [(mu-NHC)(3)Ag(3)](BF(4))(3), 2. This species contains very short Ag-Ag separations between 2.7249(10) and 2.7718(9) A. In solution, these complexes are photoluminescent.  相似文献   

5.
The reaction of [AuCl(P-N)], in which P-N represents a heterofunctional phosphine ligand, with pentafluorothiophenol, HSC(6)F(5), gives the thiolate gold derivatives [Au(SC(6)F(5))(P-N)] (P-N = PPh(2)py (1), PPh(2)CH(2)CH(2)py (2), or PPhpy(2) (3)). Complex [Au(SC(6)F(5))(PPh(2)py)] (1) reacts with [Au(OTf)(PPh(2)py)] in a 1:1 or 1:2 molar ratio to afford the di- or trinuclear species [Au(2)(μ-SC(6)F(5))(PPh(2)py)(2)]OTf (4) and [Au(3)(μ(3)-SC(6)F(5))(PPh(2)py)(3)](OTf)(2) (5), with the thiolate acting as a doubly or triply bridging ligand. The reactivity of the mononuclear compounds [Au(SC(6)F(5))(P-N)] toward silver or copper salts in different ratios has been investigated. Thus, the treatment of [Au(SC(6)F(5))(P-N)] with Ag(OTf) or [Cu(NCMe)(4)]PF(6) in a 1:1 molar ratio gives complexes of stoichiometry [AuAg(OTf)(μ-SC(6)F(5))(P-N)] (P-N = PPh(2)py (6), PPh(2)CH(2)CH(2)py (7), or PPhpy(2) (8)) or [AuCu(μ-SC(6)F(5))(P-N)(NCMe)]PF(6) (P-N = PPh(2)py (9), PPh(2)CH(2)CH(2)py (10), or PPhpy(2) (11)). These complexes crystallize as dimers and display different coordination modes of the silver or copper center, depending on the present functionalized phosphine ligand. The treatment of [Au(SC(6)F(5))(PPh(2)py)] with silver and copper compounds in other molar ratios has been carried out. In a 2:1 ratio, the complexes [Au(2)M(μ-SC(6)F(5))(2)(μ-PPh(2)py)(2)]X (M = Ag, X = OTf (12); M = Cu, X = PF(6) (13)) are obtained. The same reaction in a 4:3 molar ratio affords the species [Au(4)M(2)(μ-SC(6)F(5))(3)(μ-PPh(2)py)(4)]X(3) (M = Ag, X = OTf (14); M = Cu, X = PF(6) (15)). The crystal structures of some of these complexes reveal different interactions among the metallic d(10) centers. The complexes display dual emission. The band at higher energy has been attributed to intraligand (IL) transitions, and the one at lower energy has been assigned to a ligand to metal (LM) charge transfer process. The latter emission is modulated by the heterometal (silver or copper).  相似文献   

6.
Silver(I) coordination complexes with the versatile and biomimetic ligands 1,2,4-triazolo[1,5-a]pyrimidine (tp), 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp) and 7-amine-1,2,4-triazolo[1,5-a]pyrimidine (7atp) all feature dinuclear [Ag(2)(μ-tp)(2)](2+) building units (where tp is a triazolopyrimidine derivative), which are the preferred motif, independently of the counter-anion used. According to AIM (atoms in molecules) and ELF (electron localization function) analyses, this fact is due to the great stability of these dinuclear species. The complexes structures range from the dinuclear entities [Ag(2)(μ-tp)(2)(CH(3)CN)(4)](BF(4))(2) (1), [Ag(2)(μ-tp)(2)(CH(3)CN)(4)](ClO(4))(2) (2), [Ag(2)(μ-7atp)(2)](ClO(4))(2) (3) and [Ag(2)(μ-dmtp)(2)(CH(3)CN)](PF(6))(ClO(4)) (4) over the 1D polymer chain [Ag(2)(μ-CF(3)SO(3))(2)(μ-dmtp)(2)](n) (5) to the 3D net {[Ag(2)(μ(3)-tp)(2)](PF(6))(2)·~6H(2)O}(n) (6) with NbO topology.  相似文献   

7.
Air-oxidation of Cp'(4)Fe(4)(HCCH)(2) (Cp' = Cp (1a), C(5)H(4)Me (1b)) in an NH(4)PF(6)/CH(3)CN solution afforded the one-electron oxidized clusters [Cp'(4)Fe(4)(HCCH)(2)](PF(6)). Oxidation of 1a with excess AgBF(4) in THF afforded [1a](BF(4)), while that of 1b with excess AgBF(4) gave [1b](BF(4))(2). The X-ray crystal structure analysis of [1a](BF(4)) revealed that the monocationic cluster retains the butterfly-type Fe(4)(mu4-eta(2):eta(2):eta(1):eta(1)-HCCH)(2) framework similar to that of the neutral cluster. The average Fe-Fe bond length is shorter by 0.029 A than that in the neutral cluster. Electrochemical oxidation of 1a and 1b in 0.1 M NH(4)PF(6)/CH(3)CN solution at +0.30 and +0.25 V versus Ag/10 mM AgNO(3), respectively, afforded the two-electron oxidized clusters [1a](PF(6))(2) and [1b](PF(6))(2). The X-ray crystal structure analysis for [1b](BF(4))(2) shows that the butterfly-type cluster core is retained but shrinks more of those of neutral and monocationic clusters. The four Fe-Fe bonds in [1b](BF(4))(2) are unequivalent: one Fe-Fe bond (2.397(1) A) is apparently shorter than the others (2.439(2)-2.461(2) A).  相似文献   

8.
Yam VW  Hui CK  Yu SY  Zhu N 《Inorganic chemistry》2004,43(2):812-821
A series of tetraalkynylplatinate(II) complexes, (NBu(4))(2)[Pt(Ctbd1;CR)(4)] (R = C(6)H(4)N-4, C(6)H(4)N-3, and C(6)H(3)N(2)-5), and the diynyl analogues, (NBu(4))(2)[Pt(Ctbd1;CCtbd1;CR)(4)] (R = C(6)H(5) and C(6)H(4)CH(3)-4), have been synthesized. These complexes displayed intense photoluminescence, which was assigned as metal-to-ligand charge transfer (MLCT) transitions. Reaction of (Bu(4)N)(2)[Pt(Ctbd1;CC(5)H(4)N-4)(4)] with 4 equiv of [Pt((t)Bu(3)trpy)(MeCN)](OTf)(2) in methanol did not yield the expected pentanuclear platinum product, [Pt(Ctbd1;CC(5)H(4)N)(4)[Pt((t)Bu(3)trpy)](4)](OTf)(6), but instead afforded a strongly luminescent 4-ethynylpyridine-bridged dinuclear complex, [Pt((t)Bu(3)trpy)(Ctbd1;CC(5)H(4)N)Pt((t)Bu(3)trpy)](PF(6))(3,) which has been structurally characterized. The emission origin is assigned as derived from states of predominantly (3)MLCT [d(pi)(Pt) --> pi((t)Bu(3)trpy)] character, probably mixed with some intraligand (3)IL [pi --> pi(Ctbd1;C)], and ligand-to-ligand charge transfer (3)LLCT [pi(Ctbd1;C) --> pi((t)()Bu(3)trpy)] character. On the other hand, reaction of (Bu(4)N)(2)[Pt(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(4)] with [Ag(MeCN)(4)][BF(4)] gave a mixed-metal aggregate, [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)]. The crystal structure of [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)] has also been determined. A comparison study of the spectroscopic properties of the hexanuclear platinum-silver complex with its precursor complex has been made and their spectroscopic origins were suggested.  相似文献   

9.
The reactions of [AuClL] with Ag(2)O, where L represents the heterofunctional ligands PPh(2)py and PPh(2)CH(2)CH(2)py, give the trigoldoxonium complexes [O(AuL)(3)]BF(4). Treatment of these compounds with thio- or selenourea affords the triply bridging sulfide or selenide derivatives [E(AuL)(3)]BF(4) (E=S, Se). These trinuclear species react with Ag(OTf) or [Cu(NCMe)(4)]PF(6) to give different results, depending on the phosphine and the metal. The reactions of [E(AuPPh(2)py)(3)]BF(4) with silver or copper salts give [E(AuPPh(2)py)(3)M](2+) (E=O, S, Se; M=Ag, Cu) clusters that are highly luminescent. The silver complexes consist of tetrahedral Au(3)Ag clusters further bonded to another unit through aurophilic interactions, whereas in the copper species two coordination isomers with different metallophilic interactions were found. The first is analogous to the silver complexes and in the second, two [S(AuPPh(2)py)(3)](+) units bridge two copper atoms through one pyridine group in each unit. The reactions of [E(AuPPh(2)CH(2)CH(2)py)(3)]BF(4) with silver and copper salts give complexes with [E(AuPPh(2)CH(2)CH(2)py)(3)M](2+) stoichiometry (E=O, S, Se; M=Ag, Cu) with the metal bonded to the three nitrogen atoms in the absence of AuM interactions. The luminescence of these clusters has been studied by varying the chalcogenide, the heterofunctional ligand, and the metal.  相似文献   

10.
The dimers [Cu(2)(dppm)(2)(CN-t-Bu)(3)](BF(4))(2) and [Ag(2)(dppm)(2)(CN-t-Bu)(2)](X)(2) (X(-) = BF(4)(-), ClO(4)(-)) and the coordination polymers [[M(diphos)(CN-t-Bu)(2)]BF(4)](n) (M = Cu, Ag; diphos = bis(diphenylphosphino)butane (dppb), bis(diphenylphosphino)pentane (dpppen), bis(diphenylphosphino)hexane (dpph)), [[Ag(2)(dppb)(3)(CN-t-Bu)(2)](BF(4))(2)](n), and [[Ag(dpppen)(CN-t-Bu)]BF(4)](n) have been synthesized and fully characterized as model materials for the mixed bridging ligand polymers which exhibit the general formula [[M(diphos)(dmb)]BF(4)](n) (M = Cu, Ag; dmb = 1,8-diisocyano-p-menthane) and [[Ag(dppm)(dmb)]ClO(4)](n). The identity of four polymers ([[Ag(dppb)(CN-t-Bu)(x)]BF(4)](n) (x = 1, 2), [[Ag(2)(dppb)(3)(CN-t-Bu)(2)](BF(4))(2)](n), [[Ag(dppm)(dmb)]ClO(4)](n)) and the two dimers has been confirmed by X-ray crystallography. The structure of [[Ag(dppm)(dmb)]ClO(4)](n) exhibits an unprecedented 1-D chain of the type "[Ag(dmb)(2)Ag(dppm)(2)(2+)](n)", where d(Ag(.)Ag) values between tetrahedral Ag atoms are 4.028(1) and 9.609(1) A for the dppm and dmb bridged units, respectively. The [[Ag(dppb)(CN-t-Bu)(x)]BF(4)](n) polymers (x = 1, 2) form zigzag chains in which the Ag atoms are tri- and tetracoordinated, respectively. The [[Ag(2)(dppb)(3)(CN-t-Bu)(2)](BF(4))(2)](n) polymer, which is produced from the rearrangement of [[Ag(dppb)(CN-t-Bu)(2)]BF(4)](n), forms a 2-D structure described as a "honeycomb" pattern, where large [Ag(dppb)(+)](6) macrocycles each hosting two counterions and two acetonitrile guest molecules are observed. Properties such as glass transition temperature, morphology, thermal decomposition, and luminescence in the solid state at 293 K are reported. The luminescence bands exhibit maxima between 475 and 500 nm with emission lifetimes ranging between 6 and 55 micros. These emissions are assigned to a metal-to-ligand charge transfer (MLCT) of the type M(I) --> pi(NC)/pi(PPh(2)).  相似文献   

11.
Metal complexation studies were performed with AgSO(3)CF(3) and AgBF(4) and the ditopic pyrimidine-hydrazone ligand 6-(hydroxymethyl)pyridine-2-carboxaldehyde (2-methylpyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) in both CH(3)CN and CH(3)NO(2) in a variety of metal-to-ligand ratios. The resulting complexes were studied in solution by NMR spectroscopy and in the solid state by X-ray crystallography. Reacting either AgSO(3)CF(3) or AgBF(4) with 1 in either CH(3)CN or CH(3)NO(2) in a 1:1 metal-to-ligand ratio produced a double helicate in solution. This double helicate could be converted into a linear complex by increasing the metal-to-ligand ratio; however, the degree of conversion depended on the solvent and counteranion used. Attempts to crystallize the linear AgSO(3)CF(3) complex resulted in crystals with the dimeric structure [Ag(2)1(CH(3)CN)(2)](2)(SO(3)CF(3))(4) (2), while attempts to crystallize the AgSO(3)CF(3) double helicate from CH(3)CN resulted in crystals of another dimeric complex, [Ag(2)1(SO(3)CF(3))(CH(3)CN)(2)](2)(SO(3)CF(3))(2)·H(2)O (3). The AgSO(3)CF(3) double helicate was successfully crystallized from a mixture of CH(3)CN and CH(3)NO(2) and had the structure [Ag(2)1(2)](SO(3)CF(3))(2)·3CH(3)NO(2) (4). The linear AgBF(4) complex could not be isolated from the double helicate in solution; however, crystals grown from a solution containing both the AgBF(4) double helicate and linear complexes in CH(3)CN had the structure [Ag(2)1(CH(3)CN)(2)](BF(4))(2) (5). The AgBF(4) double helicate could only be crystallized from CH(3)NO(2) and had the structure [Ag(2)1(2)](BF(4))(2)·2CH(3)NO(2) (6).  相似文献   

12.
The compounds [K(18-crown-6)](3)[Ir(Se(4))(3)] (1), [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2), and [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3) (DMF = dimethylformamide) have been prepared from the reaction of [Ir(NCCH(3))(2)(COE)(2)][BF(4)] (COE = cyclooctene) with polyselenide anions in acetonitrile/DMF. Analogous reactions utilizing [Rh(NCCH(3))(2)(COE)(2)][BF(4)] as a Rh source produce homologues of the Ir complexes; these have been characterized by (77)Se NMR spectroscopy. [NH(4)](3)[Ir(S(6))(3)].H(2)O.0.5CH(3)CH(2)OH (4) has been synthesized from the reaction of IrCl(3).nH(2)O with aqueous (NH(4))(2)S(m)(). In the structure of [K(18-crown-6)](3)[Ir(Se(4))(3)] (1) the Ir(III) center is chelated by three Se(4)(2)(-) ligands to form a distorted octahedral anion. The structure contains a disordered racemate of the Deltalambdalambdalambda and Lambdadeltadeltadelta conformers. The K(+) cations are pulled out of the planes of the crowns and interact with Se atoms of the [Ir(Se(4))(3)](3)(-) anion. [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2) possesses no short K.Se interactions; here the [Ir(Se(4))(3)](3)(-) anion crystallizes as the Deltalambdalambdadelta/Lambdadeltadeltalambda racemate. In the crystal structure of [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3), the K(+) cation is coordinated by an 18-crown-6 ligand and two DMF molecules and the anion comprises an octahedral Ir(III) center bound by two chelating Se(4)(2)(-) chains and two trans acetonitrile groups. The [Ir(Se(4))(3)](3)(-) and [Rh(Se(4))(3)](3)(-) anions undergo conformational transformations as a function of temperature, as observed by (77)Se NMR spectroscopy. The thermodynamics of these transformations are: [Ir(Se(4))(3)](3)(-), DeltaH = 2.5(5) kcal mol(-)(1), DeltaS = 11.5(2.2) eu; [Rh(Se(4))(3)](3)(-), DeltaH = 5.2(7) kcal mol(-)(1), DeltaS = 24.7(3.0) eu.  相似文献   

13.
Reactions of a gold(i) thiolate complex [Au(Tab)(2)](2)(PF(6))(2) (Tab = 4-(trimethylammonio)benzenethiolate) with equimolar 1,2-bis(diphenylphosphine)ethane (dppe), 1,3-bis-(diphenylphosphine)propane (dppp) or 1,4-bis-(diphenylphosphine)butane (dppb) in MeOH-DMF-CH(2)Cl(2) gave rise to three polymeric complexes [Au(2)(Tab)(2)(dppe)](2)(PF(6))(4)·2MeOH (1·2MeOH), [Au(2)(Tab)(2)(dppp)]Cl(2)·0.5MeOH·4H(2)O (2·0.5MeOH·4H(2)O), and [Au(4)(μ-Tab)(2)(Tab)(2)(dppb)](PF(6))(4)·4DMF (3·4DMF), respectively. Analogous reaction of 1 with dppb in DMF/C(2)H(4)Cl(2) produced one tetranuclear complex [Au(2)(μ-Tab)(Tab)(2)](2)Cl(4)·2DMF·4H(2)O (4·2DMF·4H(2)O). Complexes 1-4 were characterized by elemental analysis, IR spectra, UV-vis spectra, (1)H and (31)P{(1)H} NMR and single crystal X-ray analysis. Compounds 1 and 2 consist of [Au(Tab)](2) dimeric fragments that are bridged by dppe or dppp ligands to form a 1D linear chain extending along the a axis. For 3, each [Au(4)(Tab)(2)(μ-Tab)(2)] fragment is linked by a pair of dppb ligands to afford another 1D chain extending along the c axis. For 4, the four [Au(Tab)](+) fragments are linked by two Au-Au bonds and two doubly bridging Tab ligands to form a {[Au(Tab)](4)(μ-Tab)(2)} chair-like cyclohexane structure. Hydrogen-bonding interactions in 2 and 4 lead to the formation of interesting 2D hydrogen-bonded networks. The luminescent properties of 1-4 in solid state were also investigated.  相似文献   

14.
The oxidation state of the chromium center in the following compounds has been probed using a combination of chromium K-edge X-ray absorption spectroscopy and density functional theory: [Cr(phen)(3)][PF(6)](2) (1), [Cr(phen)(3)][PF(6)](3) (2), [CrCl(2)((t)bpy)(2)] (3), [CrCl(2)(bpy)(2)]Cl(0.38)[PF(6)](0.62) (4), [Cr(TPP)(py)(2)] (5), [Cr((t)BuNC)(6)][PF(6)](2) (6), [CrCl(2)(dmpe)(2)] (7), and [Cr(Cp)(2)] (8), where phen is 1,10-phenanthroline, (t)bpy is 4,4'-di-tert-butyl-2,2'-bipyridine, and TPP(2-) is doubly deprotonated 5,10,15,20-tetraphenylporphyrin. The X-ray crystal structures of complexes 1, [Cr(phen)(3)][OTf](2) (1'), and 3 are reported. The X-ray absorption and computational data reveal that complexes 1-5 all contain a central Cr(III) ion (S(Cr) = (3)/(2)), whereas complexes 6-8 contain a central low-spin (S = 1) Cr(II) ion. Therefore, the electronic structures of 1-8 are best described as [Cr(III)(phen(?))(phen(0))(2)][PF(6)](2), [Cr(III)(phen(0))(3)][PF(6)](3), [Cr(III)Cl(2)((t)bpy(?))((t)bpy(0))], [Cr(III)Cl(2)(bpy(0))(2)]Cl(0.38)[PF(6)](0.62), [Cr(III)(TPP(3?-))(py)(2)], [Cr(II)((t)BuNC)(6)][PF(6)](2), [Cr(II)Cl(2)(dmpe)(2)], and [Cr(II)(Cp)(2)], respectively, where (L(0)) and (L(?))(-) (L = phen, (t)bpy, or bpy) are the diamagnetic neutral and one-electron-reduced radical monoanionic forms of L, and TPP(3?-) is the one-electron-reduced doublet form of diamagnetic TPP(2-). Following our previous results that have shown [Cr((t)bpy)(3)](2+) and [Cr(tpy)(2)](2+) (tpy = 2,2':6',2"-terpyridine) to contain a central Cr(III) ion, the current results further refine the scope of compounds that may be described as low-spin Cr(II) and reveal that this is a very rare oxidation state accessible only with ligands in the strong-field extreme of the spectrochemical series.  相似文献   

15.
A series of primary phosphine homoleptic complexes [ML(4)](n)()(+)X(n)() (1, M = Ni, n = 0; 2, M = Pd, n = 2, X = BF(4); 3, M = Cu, n = 1, X = PF(6); 4, M = Ag, n = 1, X = BF(4); L = PH(2)Mes, Mes = 2,4,6-Me(3)C(6)H(2)] was prepared from mesitylphosphine and Ni(COD)(2), [Pd(NCMe)(4)][BF(4)](2), [Cu(NCMe)(4)]PF(6), and AgBF(4), respectively. Reactions of 1-4 with MeC(CH(2)PPh(2))(3) (triphos) or [P(CH(2)CH(2)PPh(2))(3)] (tetraphos) afforded the derivatives [M(L')L](n)()(+)X(n)() (L' = triphos; 6, M = Ni, n = 0; 7, M = Cu, n = 1, X = PF(6); 8, M = Ag, n = 1, X = BF(4); L' = tetraphos; 9, M = Pd, n = 2, X = BF(4)). Addition of NOBF(4) to 1 yielded the nitrosyl compound [NiL(3)(NO)]BF(4), 5. The solution structure and dynamics of 1-9 were studied by (31)P NMR spectroscopy (including the first reported analyses of a 12-spin system for 1-2). Complexes 1, 3, 6, and 7.solvent were characterized crystallographically. The structural and spectroscopic studies suggest that the coordination properties of L are dominated by its relatively small cone angle and that the basicity of L is comparable to that of more commonly used tertiary phosphines.  相似文献   

16.
A series of homodinuclear platinum(II) complexes containing bridging chalcogenido ligands, [Pt(2)(mu-E)(2)(P empty set N)(4)] (P empty set N=dppy, E=S (1), Se (2); P empty set N=tBu-dppy, E=S (3)) (dppy=2-(diphenylphosphino)pyridine, tBu-dppy=4-tert-butyl-2-(diphenylphosphino)pyridine) have been synthesized and characterized. The nucleophilicity of the [Pt(2)E(2)] unit towards a number of d(10) metal ions and complexes has been demonstrated through the successful isolation of a number of novel heteropolynuclear platinum(II)-copper(I), -silver(I), and -gold(I) complexes: [[Pt(2)(mu(3)-E)(2)(dppy)(4)](2)Ag(3)](PF(6))(3) (E=S (4); Se (5)) and [Pt(2)(dppy)(4)(mu(3)-E)(2)M(2)(dppm)]X(2) (E=S, M=Ag, X=BF(4) (6); E=S, M=Cu, X=PF(6) (7); E=S, M=Au, X=PF(6) (8); E=Se, M=Ag, X=PF(6) (9); E=Se, M=Au, X=PF(6) (10)). Some of them display short metal.metal contacts. These complexes have been found to possess interesting luminescence properties. Through systematic comparison studies, the emission origin has been probed.  相似文献   

17.
The first observation of luminescence from a structurally well-defined Ag(2)S molecular nanocluster is reported. Reaction of AgSBu(t)/AgBF(4) with N(2)H(4) in methanol affords the tetracationic cluster [Ag(62)S(13)(SBu(t))(32)](BF(4))(4), which has a core-shell configuration. The 14 silver(I) centers of the [Ag(14)S(13)] core are in a face-centered cubic arrangement with each edge bridged by a S(2-) ligand; the core is further connected to the [Ag(48)(SBu(t))(32)] shell via both Ag-S bonds and Ag···Ag interactions. This novel cluster displays intense red emission in both the solid state and solution at room temperature.  相似文献   

18.
The reaction of [Ru(2)Cl(O(2)CMe)(DPhF)(3)] (DPhF=N,N'-diphenylformamidinate) with aqueous HCl leads to the substitution of the acetate ligand to give the complex [Ru(2)Cl(2)(DPhF)(3)] (1). Similar reaction of [Ru(2)(O(2)CMe)(DPhF)(3)(H(2)O)]BF(4) with aqueous HBr or HI produces [Ru(2)Br(2)(DPhF)(3)] (2), and [Ru(2)I(2)(DPhF)(3)] (3), respectively. The reaction of 1 with AgBF(4) to form the highly unsaturated unit [Ru(2)(DPhF)(3)](2+), which is isolated as [Ru(2)(BF(4))(DPhF)(3)(H(2)O)]BF(4) (4), and [Ru(2)(MeCN)(2)(DPhF)(3)](BF(4))(2) (5), is also reported. The use of AgNO(3) instead of AgBF(4) leads to [Ru(2)(NO(3))(2)(DPhF)(3)] (6). The magnetic behaviour of complexes 1-4 and 6 is intermediate between high- and low-spin configurations. A relationship between the magnetic behaviour and the visible-near-infrared (Vis-NIR) spectra is apparent. In addition, the crystal structure determinations of 2, 4.THF, and 6, have been carried out. Complexes 1-3, 5 and 6 are the first examples of open-paddlewheel structures in diruthenium chemistry. The BF(4) (-) bridging the metal centres in 4THF is activated and forms very short Ru-F bonds.  相似文献   

19.
The dialkylcyanamide complexes cis-[PtCl(NCNR(2))(PPh(3))(2)][BF(4)] 1 and cis-[Pt(NCNR(2))(2)(PPh(3))(2)][BF(4)](2) 2 (R = Me or Et) have been prepared by treatment of a CH(2)Cl(2) solution of cis-[PtCl(2)(PPh(3))(2)] with the appropriate dialkylcyanamide and one or two equivalents of Ag[BF(4)], respectively. Compounds 2 can also be obtained from 1 by a similar procedure. Their reaction with oximes, HON=CR'R' ' (R'R' ' = Me(2) or C(4)H(8)), in CH(2)Cl(2) and in the presence of Ag[BF(4)] or Cu(CH(3)COO)(2), leads to the novel type of azametallacycles cis-[Pt(NH=C(ON=CR'R")-NR2)(PPh3)2][BF4]2 4 upon an unprecedented coupling of the organocyanamides with oximes, in a process that proceeds via the mixed oxime-organocyanamide species cis-[Pt(NCNR(2))(HON=CR'R' ')(PPh(3))(2)][BF(4)](2) 3, and is catalyzed by either Ag(+) or Cu(2+) which activate the ligating organocyanamide by Lewis acid addition to the amide group. In contrast, in the organonitrile complexes cis-[Pt(NCR)(2)(PPh(3))(2)][BF(4)](2) 5 (R = C(6)H(4)OMe-4 or Et), obtained in a similar way as 2 (but by using NCR instead of the cyanamide), the ligating NCR is not activated by the Lewis acid and does not couple with the oximes. The spectroscopic properties of those complexes are reported along with the molecular structures of 2b (R = Et), 4a1 (R = Me, R'R' ' = Me(2)), and 4b1 (R = Et, R'R' ' = Me(2)), as established by X-ray crystallography which indicates that in the former complex the amide-N-atoms are trigonal planar, whereas in the latter (4a1 and 4b1) the five-membered rings are planar with a localized N=C double bond (imine group derived from the cyanamide) and the exocyclic amide and alkylidene groups (in 4b1) are involved in two intramolecular H-bonds to the oxygen atom of the ring.  相似文献   

20.
The reaction of pyridylbis(3-hexamethyleneiminyl thiosemicarbazone) (H(2)Plhexim) with various silver(I) salts and metal-ligand ratios led to the isolation of different complexes of the formulae [Ag(NO(3))(H(2)Plhexim)]·H(2)O (1), [Ag(2)(NO(3))(H(2)Plhexim)(CH(3)OH)](NO(3)) (2), [Ag(2)(ClO(4))(2)(H(2)Plhexim)] (3), [Ag(HPlhexim)]·xH(2)O (4), [Ag(HPlhexim)] (4a), [Ag(2)(Plhexim)(PPh(3))(4)]·2MeOH (5) and [Ag(4)(Plhexim)(2)]·DMF (6). The complexes were fully characterized by elemental analysis, ESI mass spectrometry, IR and NMR ((1)H, (31)P) spectroscopy. The structures of 4a, 5 and 6 were also identified by single crystal X-ray structure determination. The concentration dependence on the absorption spectra of the methanolic solutions indicates polymerization equilibria in the ground state in both the ligand and the complexes. While H(2)Plhexim is essentially non-fluorescent, complexes 1-5 fluoresce more strongly by comparison. This fluorescent behavior is consistent with the monomeric or dimeric nature of the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号