首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven Cd(II)–ferrocenesuccinate coordination complexes with the formulas [Cd(η2-FcCOC2H4COO)2(pbbbm)]2 (1), [Cd(η2-FcCOC2H4COO)(pbbbm)Cl]2 (2), [Cd(η2-FcCOC2H4COO)(pbbbm)I]2 (3), {[Cd(η2-FcCOC2H4COO)2(btx)2]2(CH3OH)0.5} (4), [Cd(η2-FcCOC2H4COO)2(bix)]2(H2O) (5), {[Cd(η2-FcCOC2H4COO)(bbbm)1.5Cl] · (CH3OH)0.5}n (6), and {[Cd(η2-FcCOC2H4COO)(mbbbm)Cl] · (H2O)2.75}n (7) [pbbbm = 1,4-Bis(benzimidazole-1-ylmethyl)benzene), btx = 1,4-bis(triazol-1-ylmethyl)benzene), mbbbm = 1,3-bis(benzimidazole-1-ylmethyl)benzene), bix = 1,4-bis(imidazol-1-ylmethyl)benzene, bbbm = 1,1-(1,4-Butanediyl)bis-1H-benzimidazole)] have been synthesized and characterized. Single-crystal X-ray analysis reveals that complexes 15 are all dimers and bridged by pbbbm, btx and bix, respectively. But the five complexes present some differences in their dimeric conformations, which can be ascribed to the impacts of adjuvant ligands and counter anions. In contrast to complexes 1–5, both 6 and 7 are of 1-D structures (with the same counter anions), and the former is double ladder-like structure only bridged by bbbm, while the latter is chain-like structure bridged by chlorine anions and adjuvant ligand mbbbm. Notably, various π–π interactions are found in complexes 17, and they have significant contributions to molecular self-assembly processes. The electrochemical studies of complexes 17 in DMF solution display irreversible redox waves and indicate that the half-wave potentials of the ferrocenyl moieties in these complexes are all shifted to positive potential compared with that of ferrocenesuccinate.  相似文献   

2.
N-Thioamide thiosemicarbazone derived of 2-chloro-4-hydroxy-benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in chloroform gave the adducts [ReX(CO)3(HL)] (1a X = Cl, R = H; 1a′ X = Br, R = H; 1b X = Cl, R = CH3; 1b′ X = Br, R = CH3; 1c X = Cl, R = Ph; 1c′ X = Br, R = Ph) in good yield. Complexes 1a′ and 1b’ were also obtained by the reaction of HL1 and HL3 with [ReBr(CO)5] in toluene.All the compounds have been characterized by elemental analysis, mass spectrometry (FAB), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3 and 1a·H2O were also established by X-ray diffraction. In 1a, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms, forming a five-membered chelate ring, as well as three carbonyl carbon and chloride atoms. The resulting coordination polyhedron can be described as a distorted octahedron.The study of the crystals obtained by slow evaporation of methanol and DMSO solutions of the adducts 1a′ and 1b, respectively, showed the formation of dimer structures based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6]·3H2O (2a)·3H2O and [Re2(L2)2(CO)6]·(CH3)2SO (2b)·2(CH3)2SO. Amounts of these thiosemicarbazonate complexes [Re2(L)2(CO)6] (2) were obtained by reaction of the corresponding free ligands with [ReCl(CO)5] in dry toluene.In 2a·3H2O and 2b·2(CH3)2SO the dimer structures are established by Re–S–Re bridges, where S is the thiolate sulphur from a N,S-bidentate thiosemicarbazonate ligand. In both structures the rhenium coordination sphere is similar; the dimers are in the same diamond Re2S2 face.  相似文献   

3.
Oxidative demetalation of Fischer ferrocenyl ethoxy carbene complexes (1ac, M = Cr, Mo, W) and new Fischer ferrocenyl R-amino carbene complexes [25 (ac), 1115 (ac), and 2122 (ac); M = Cr, Mo, W; R = H, CH3, C2H5, C3H7, (CH2)2OH, (CH2)3OH, (CH2)2(OMe)2, (CH2)3N(Me)2, CH2CHCH2, (CH2)2OSi(CH3)3, (CH2)3OSi(CH3)3] with elemental sulfur–NaBH4 were carried out under mild conditions, obtaining O-ethyl ferrocenecarbothioate (6) and novel ferrocenyl thioamides (710 and 1620) in excellent yields.  相似文献   

4.
The syntheses and characterization of six copper(II) complexes of 2-benzoylpyridine benzhydrazone in the form of [Cu(BPB)2], [Cu(BPB)Cl]·H2O, [Cu(BPB)Br], [Cu2(BPB)2](ClO4)2·4H2O, [Cu(BPB)N3]·H2O, and [Cu(BPB)NCS]·H2O·CH3OH are reported. The analytical methods used for the characterization of complexes include partial elemental analyses, IR, electronic and EPR spectra, conductivity measurements, magnetic susceptibility measurements and single crystal X-ray diffraction. From the crystal structure, it is clear that the hydrazone adopts the E conformation about the azo bond to attach to the metal through the Npy–Nazo–O chelating system. In the EPR spectra of complexes in DMF at 77 K four hyperfine quartets in the parallel region could be resolved and a half field signal is observed at 1500 G for complex [Cu2(BPB)2](ClO4)2·4H2O in polycrystalline state at 298 K which gives evidence for its binuclear nature indicating a weak interaction between the two Cu(II) ions.  相似文献   

5.
A series of four isostructural dodecanuclear complexes [MnIII9MnII2LnIII(O)8(OH)(piv)16(NO3)(CH3CN)]·xCH3CN·yC7H16 (piv = pivalate; x = ½, y = ¾, Ln = Tb (1); x = 2, y = ½, Ln = Dy (2), Ho (3), and Y (4)) has been prepared for which the structural motif described as ‘a lanthanide ion nested in a large manganese shell’ is observed. All compounds show out-of-phase signals in their ac susceptibilities, and their single-molecule magnet behaviour was confirmed by single-crystal micro-SQUID studies of 1-3 which show hysteresis loops of molecular origin at T < 1.0 K. The SMM behaviour observed in compounds 1-3 is more pronounced than that for 4, which contains the diamagnetic YIII ion. This is principally the result of ferromagnetic coupling between the paramagnetic anisotropic LnIII ions (TbIII, DyIII and HoIII) and the manganese shell, which enhances the total spin ground state of the complexes.  相似文献   

6.
Two hexanuclear zinc(II) complexes, [Zn6(L1)22-OH)22-CH3COO)8] · CH3CN (1 · CH3CN) and [Zn6(L2)22-OH)22-CH3COO)8] · 4CH3CN (2 · 4CH3CN), where HL1 = 4-methyl-2,6-bis(cyclohexylmethyliminomethyl)-phenol and HL2 = 4-methyl-2,6-bis(1-naphthalylmethyliminomethyl)-phenol, have been synthesized and characterized by elemental analysis, FT-IR and fluorescence spectroscopic methods, and by X-ray diffraction analysis. In the asymmetric unit of complex 1, two of the three zinc atoms have pentacoordinate geometries and the other is tetrahedrally coordinated, whereas the three distinct Zn atoms in complex 2 adopt three different coordination environments, namely distorted octahedral, trigonal bipyramidal and tetrahedral. The fluorescence properties of the ligands and complexes have been investigated.  相似文献   

7.
The TtZn(II)-bound perchlorate complex [TtZn–OClO3] 1 (Ttxyly = hydrotris[N-xylyl-thioimidazolyl]borate) was used for the synthesis of zinc(II)-bound ethanthiothiol complex [TtZn–SCH2CH3] 2 and its hydrogen-bond containing analog Tt–ZnSCH2CH2–NH(CO)OC(CH3)3 3. These thiolate complexes were examined as structural models for the active sites of Ada repair protein toward methylation reactions. The Zn[S3O] coordination sphere in complex 1 includes three thione donors from the ligand Ttixyl and one oxygen donor from the perchlorate coligand in ideally tetrahedral arrangement around the zinc center. The average Zn(1)–S(thione) bond length is 2.344 Å, and the Zn(1)–O(1) bond length is 1.917 Å.  相似文献   

8.
Two new mononuclear complexes of manganese(III) viz. [MnL2(LH)2]ClO4 (1) and [MnL2(N3)]·0.5CH3OH (2) have been synthesized by reacting manganese perchlorate with furfurylamine and salicylaldehyde (plus sodium azide in 2) where L = (2-hydroxybenzyl-2-furylmethyl)imine, an asymmetric bidentate Schiff base formed in situ to bind the Mn(III) ion. The complexes have been characterized by elemental analysis, IR spectroscopy, TGA and single crystal X-ray diffraction studies. Structural studies reveal that the complexes 1 and 2 adopt an octahedral and a square pyramidal geometry, respectively. The antibacterial activity of the complexes has been tested against Gram(+) and Gram(?) bacteria.  相似文献   

9.
The crystal structures of N-o-hydroxybenzimido-meso-tetraphenylporphyrinatozinc(II) toluene solvate [Zn(N-NCO(o-OH)C6H4-tpp)·C6H5CH3; 4·C6H5CH3], N-o-hydroxybenzimido-meso-tetraphenylporphyrinatonickel(II) chloroform solvate [Ni(N-NCO(o-OH)C6H4-tpp)·0.6CHCl3; 5·0.6 CHCl3], N-o-hydroxybenzimido-meso-tetraphenylporphyrinatocopper(II) toluene solvate [Cu(N-NCO(o-OH)C6H4-tpp)·C6H5CH3; 6·C6H5CH3] and N-o-oxido-benzimido-meso-tetraphenylporphyrinato(-κ4,N1,N2,N3,N5,κO2) manganese (III) methylene chloride·methanol solvate [Mn(N-NCO(o-O)C6H4-tpp)·CH2Cl2·MeOH; 8·CH2Cl2·MeOH] were established. The coordination sphere around Zn2+ ion in 4·C6H5CH3, (or Ni2+ ion in 5·0.6 CHCl3 or Cu2+ ion in 6·C6H5CH3) is a distorted square planar (DSP) whereas for Mn3+ in 8·CH2Cl2·MeOH, it is a distorted trigonal bipyramid (DTBP) with O(1), N(1) and N(3) lying in the equatorial plane for 8·CH2Cl2·MeOH. The g value of 8.27 measured from the parallel polarization of X-band EPR spectra at 293 K is consistent with the high-spin mononuclear manganese(III) (S = 2) in 8. The magnitude of axial (D) zero-field splitting (ZFS) for the mononuclear Mn(III) in 8 was determined approximately as 3.0 cm?1 by the paramagnetic susceptibility measurements and conventional EPR spectroscopy.  相似文献   

10.
《Polyhedron》2005,24(3):407-412
Two mononuclear iron complexes with the quinoline-2-carboxylate ion (quin-2-c ion) have been obtained by the reaction of iron powder with quinoline-2-carboxylic acid in dichloromethane. The compounds [Fe(quin-2-c)2] (1), [Fe(quin-2-c)2(H2O)2] · 2CH2Cl2 (2) and [Fe(quin-2-c)2(H2O)2] · 2EtOH · 2H2O (3) have been investigated by IR and UV–Vis spectroscopy, magnetic susceptibility and field-dependent magnetization measurements. The structure of 2 has been characterised by X-ray diffraction. The 2D bilayered frameworks of 2 and 3 are constructed by extensive hydrogen bonding interactions between water and the organic ligand coordinated to iron (II). The magnetic properties of 2 and 3 were interpreted on the basis of a spin Hamiltonian that included axial and rhombic crystal field components. The weak antiferromagnetic (2) and ferromagnetic (3) interactions are evident in the low temperature data and possibly occur via strong hydrogen bonds.  相似文献   

11.
Five new coordination polymers, [Cd(1,2′-cy)0.5(bix)H2O]n (1), [Cd2(1,2′-cy)2(1,10′-phen)2(H2O)2] (2), {[Co(1,2-cy)(2,2′-bipy)(H2O)2]·2H2O}n (3) {[Cd(succ)(1,10′-phen)H2O]·H2O}n (4), and {[Cd(succ)(2,2′-bipy)H2O]·2H2O}n (5) (1,2-cy = 4-cyclohexene-1,2-dicarboxylate, succ = succinic acid, bix = 1,4-bis(imidazol-1-ylmethyl)benzene, 1,10′-phen = 1,10-phenanthroline, 2,2′-bipy = 2,2′-bipyridine), have been synthesized and characterized by single-crystallographic X-ray diffraction. Complex 1 shows a two-dimensional covalent layer structure. Complex 2 exhibits a two-dimensional supramolecular layer network composed from discrete fundamental units. Complex 3 exhibits a one-dimensional covalent chain-like structure, which further extends to a two-dimensional supramolecular structure with hydrogen bonding and π-π interactions respectively. Complexes 4 and 5 show three-dimensional supramolecular networks composed from one-dimensional chain-like covalent structures. Furthermore, the magnetic property of complex 3 and fluorescent properties of complexes 1, 2, 4 and 5 have also been studied.  相似文献   

12.
Three novel Zn(II) complexes,[Zn4L1Cl4]-3H2O(1),[Zn4L2Cl4]-2DMF(2) and[Zn4L3Cl4]H2O(3),have been synthesized and structurally characterized.In these complexes,interesting 32-membered dodecadentate macrocyclic ligands were generated in situ by ’2 + 2’ type condensation reactions between a tetraamine and various dialdehydes.All the complexes are isostructurally tetranuclear Zn(Ⅱ) complexes,containing endogenous alkoxo and phenoxo bridges.Applications of the macrocyclic ligands as Zn2+ sensors have been investigated.Take H4L1 for example,it exhibits a 4-fold fluorescence enhancement upon the addition of 2 equiv.of Zn2+ in MeOH.  相似文献   

13.
Treatment of diphenyl-β-diketiminatoaluminum dihydride, LAlH2 [1, L = {H5C6–NC(Me)}2CH] with neopentyl- or trimethylsilylmethyllithium afforded the corresponding alkylderivatives LAlH(R) [R = CH2–SiMe3 (2), CH2–CMe3 (3)] by the precipitation of lithium hydride. Deprotonation of a methyl group instead of salt elimination occurred by the similar reaction of the more basic alkyllithium compound LiC(SiMe3)3. The reactions of the hydrides 13 with tert-butyl hydrogenperoxide did not yield the expected peroxo derivatives, instead the dialuminoxanes LAl(R)–O–Al(R)L [R = OCMe3 (5), CH2SiMe3 (6), CH2CMe3 (7)] were isolated in high yields. Their Al–O–Al bridges deviated from linearity and had Al–O–Al bond angles of about 155° on average.  相似文献   

14.
Fluorescence properties of five 4-acyl pyrazolone based hydrazides (H2SBn) and their Fe (III) heterochelates of the type [Fe(SBn)(L)(H2O)]·mH2O [H2SBn = nicotinic acid [1-(3-methyl-5-oxo-1-phenyl-4,5-di hydro-1H-pyrazol-4yl)-acylidene]-hydrazide; where acyl = –CH3, m = 4 (H2SB1); –C6H5, m = 2 (H2SB2); –CH2–CH3, m = 3 (H2SB3); –CH2–CH2–CH3, m = 1.5 (H2SB4); –CH2–C6H5, m = 1.5 (H2SB5) and HL = 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid] were studied at room temperature. The fluorescence spectra of heterochelates show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. The kinetic parameters such as order of reaction (n), energy of activation (Ea), entropy (S*), pre-exponential factor (A), enthalpy (H*) and Gibbs free energy (G*) have been reported.  相似文献   

15.
Reactions of copper(I) halides with a series of thiosemicarbazones, namely, benzaldehyde thiosemicarbazone (R1R2CN–NH–C(S)–NH2, R1 = Ph, R2 = H; Hbtsc), 2-benzoylpyridine thiosemicarbazone (R1 = Ph, R2 = py; Hbpytsc), and acetone thiosemicarbazone (R1 = R2 = Me; Hactsc), in the presence of PPh3 has formed dimeric complexes, viz. sulfur bridged [Cu2(μ-S-Hbtsc)2Br2(PPh3)2]·2H2O (1), iodo-bridged [Cu2(μ-I)21-S-Hbtsc)2(PPh3)2] (2), and heterobridged [Cu23-S,N3-Hactsc)(η1-Br)(μ-Br)(PPh3)2] (3), as well as mononuclear complexes [CuX(η1-S-Hbpytsc)(PPh3)2]·CH3CN (X = Br, 4; Cl, 5). Complexes 1, 2, 4 and 5 involve thiosemicarbazone ligands in η1-S bonding mode while in compound 3, ligand acts in N3, S-chelation-cum-S-bridging mode (μ3-S,N3 mode). The intermolecular interactions such as, N2H?X, HN1H?X (X = S, Br, Cl), CH?π interactions lead to 2D networks. All the complexes have been characterized with the help of elemental analyses, IR, 1H, and 31P NMR spectroscopy, and single crystal X-ray crystallography. The role of a solvent in alteration of nuclearity and bonding modes of complexes has been highlighted.  相似文献   

16.
17.
Mononuclear ruthenium(III) complexes of the type [RuX(EPh3)2(L)] (E = P or As; X = Cl or Br; L = dibasic terdentate dehydroacetic acid thiosemicarbazones) have been synthesized from the reaction of thiosemicarbazone ligands with ruthenium(III) precursors, [RuX3(EPh3)3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr3(PPh3)2(CH3OH)] in benzene. The compositions of the complexes have been established by elemental analysis, magnetic susceptibility measurement, FT-IR, UV–vis and EPR spectral data. These complexes are paramagnetic and show intense d–d and charge transfer transitions in dichloromethane. The complexes show rhombic EPR spectra at LNT which are typical of low-spin distorted octahedral ruthenium(III) species. All the complexes are redox active and display an irreversible metal centered redox processes. Complex [RuCl(PPh3)2(DHA–PTSC)] (5) was used as catalyst for transfer hydrogenation of ketones in the presence of isopropanol/KOH and was found to be the active species.  相似文献   

18.
Syntheses of three benzaldazine compounds 13 with the general formula Ar1(CH = N–N = HC)Ar2 (Ar1 = Ar2 = 2-OH-3,5-tBu2C6H2 (1), Ar1 = Ar2 = 2-BrC6H4 (2), Ar1 = ortho-C6H4(NHC6H3-Me2-2,6), Ar2 = C6H4F-2 (3)) are described. All compounds were characterized by elemental analysis, 1H NMR, 13C NMR, IR spectroscopy and single-crystal X-ray crystallography. The different supramolecular structures were obtained through different weak interactions (C ? H···O, O ? H···N and π···π interactions for 1; C ? H···Br and Br···Br interactions for 2; C ? H···F and C ? H···N interactions for 3). Compound 1 shows solvent-dependent fluorescent properties with blue to green emission on the increasing of the solvent polarity. Compounds 2, 3 show blue photoluminescence in different solvents.  相似文献   

19.
The synthesis, structures and magnetism of the complexes [FeII(3-bpp)2][bpmdcK](SeCN)1.7(ClO4)1.3·MeOH·H2O (1), [FeII(3-bpp)2]4[bpmdcH2(H2O)2](ClO4)10·7H2O·3MeOH (2) and cis-[FeII2(NCSe)2((3,5-Me2pz)3CH)2(μ-bpmdc)]·2MeCN (3) (where 3-bpp = 2,6-di(pyrazole-3yl)pyridine, bpmdc = N,N′-bis(4-pyridyl-methyl)diaza-18-crown-6) and (3,5-Me2pz)3CH = tris(3,5-dimethylpyrazole)methane, are presented. These compounds form a study of the supramolecular influence of host–guest/crown-ether interactions and cation-to-crown hydrogen-bonding effects upon d6 spin transitions, the latter occurring above, or near to, room temperature in 1 and 2. Desolvation effects also influence the T1/2 values. The dinuclear compound 3 contains covalent pyridyl (crown) N to Fe bridge bonding and remains high spin.  相似文献   

20.
Dinuclear ruthenium(I,I) carboxylate complexes [Ru2(CO)4(μ-OOCR)2]n (R = CH3 (1a), C3H7 (1b), H (1c), CF3 (1d)) and 2-pyridonate complex [Ru2(CO)4(μ-2-pyridonate)2]n (3) catalyze efficiently the cyclopropanation of alkenes with methyl diazoacetate. High yields are obtained with terminal nucleophilic alkenes (styrene, ethyl vinyl ether, α-methylstyrene), medium yields with 1-hexene, cyclohexene, 4,5-dihydrofuran and 2-methyl-2-butene. The E-selectivity of the cyclopropanes obtained from the monosubstituted alkenes and the cycloalkenes decreases in the order 1b > 1a > 1d > 1c. The cyclopropanation of 2-methyl-2-butene is highly syn-selective. Several complexes of the type [Ru2(CO)4(μ-L1)2]2 (4) and (5), [Ru2(CO)4(μ-L1)2L2] (L2 = CH3OH, PPh3) (6)–(9) and [Ru2(CO)4(CH3CN)2(μ-L1)2] (10) and (11), where L1 is a 6-chloro- or 6-bromo-2-pyridonate ligand, are also efficient catalysts. Compared with catalyst 3, a halogen substituent at the pyridonate ligand affects the diastereoselectivity of cyclopropanation only slightly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号