首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ribose at the 3′-end of oligonucleotides (oligos) selectively modified by Os(VI)2,2′-bipyridine (bipy) produced two CV redox couples at pyrolytic graphite electrode. Using square wave voltammetry (SWV) 22-mer oligos can be detected down to 250 nM. At mercury electrodes the Os(VI)bipy-oligo adducts produced an electrocatalytic peak at ~?1.2 V allowing their determination down to picomolar concentrations. High specificity of Os(VI)bipy for ribose in nucleic acids and high sensitivity of the determination at mercury and solid amalgam electrodes give promise for new efficient methods of microRNA determination.  相似文献   

2.
This work points out that electrogeneration of silica gel (SG) films on glassy carbon electrodes (GCEs) can be applied to immobilize biomolecules – hemoglobin (Hb) or glucose oxidase (GOD) or both of them in mixture – without preventing their activity. These proteins were physically entrapped in the sol–gel material in the course of the electro-assisted deposition process applied to form the thin films onto the electrode surface. SG films were prepared from a precursor solution by applying a suitable cathodic potential likely to induce a local pH increase at the electrode/solution interface, accelerating thereby polycondensation of the silica precursors with concomitant film formation. Successful immobilization of proteins was checked by various physico-chemical techniques. Both Hb and GOD were found to undergo direct electron transfer, as demonstrated by cyclic voltammetry. GCE–SG–Hb gave rise to well-defined peaks at potentials Ec = −0.29 V and Ea = −0.17 V in acetate buffer, corresponding to the FeIII/FeII redox system of heme group of the protein, while GCE–SG–GOD was characterized by the typical signals of FAD group at Ec = −0.41 V and Ea = −0.33 V in phosphate buffer. These two redox processes were also evidenced on a single voltammogram when both Hb and GOD were present together in the same SG film. Hb entrapped in the silica thin film displayed an electrocatalytic behavior towards O2 and H2O2 in solution, respectively in the mM and μM concentration ranges. Immobilized GOD kept its biocatalytic properties towards glucose. Combined use of these two proteins in mixture has proven to be promising for detection of glucose in solution via the electrochemical monitoring of oxygen consumption (decrease of the oxygen electrocatalytic signal).  相似文献   

3.
This communication reports about adsorptive stripping voltammetric determination of baker’s yeast tRNA that was modified with the complex osmium tetroxide bipyridine. The uracil and cytosine bases are able to react with [OsO4(bipy)] within 2 h. We observed a 42-fold higher sensitivity for the catalytic Os-peak on the hanging mercury drop electrode (HMDE) compared with an [OsO4(bipy)]-modified 20-base ssDNA. We found a 0.27 μg/l detection limit for [OsO4(bipy)]-tRNA. A linear calibration function was observed up to 3 μg/l. The effect of accumulation potential was very small. These findings possibly indicate a strong adsorption on the HMDE. Such labelling of tRNA with [OsO4(bipy)] holds great promise for future biosensor application regarding the detection of other RNA species.  相似文献   

4.
The electrochemical reduction of molecular oxygen (O2) has been performed at gold electrodes modified with a submonolayer of a self-assembly (sub-SAM/Au) of a thiol compound (typically cysteine (CYST)) in O2-saturated 0.5 M KOH. At bare gold electrode O2 reduction reaction proceeds irreversibly, while this reaction is totally hindered at gold electrodes with a compact structure of CYST over its surface. The partial reductive desorption of the compact CYST monolayer was achieved by controlling the potential of the CYST/Au electrode, leading to the formation of a submonolayer coverage of the thiol compound over the Au electrode surface (sub-SAM/Au), at which the CYST molecules selectively block the Au(1 0 0) and Au(1 1 0) fractions (the so-called rough domains) of the polycrystalline Au while the Au(1 1 1) component (the so-called smooth domains) remains bare (i.e., uncovered with CYST). This sub-SAM/Au electrode extraordinarily exhibits a quasi-reversible two-electron reduction of molecular oxygen (O2) in alkaline medium with a peak separation (ΔEp) between the cathodic and anodic peak potentials (Epc,Epa) of about 60 mV. The ratio of the anodic current to the cathodic one is close to unity. The formal potential (Eo) of this reaction is found to equal −150 mV vs. Ag/AgCl/KCl(sat.).  相似文献   

5.
Poly-anionic deoxyribonucleic acid (DNA) was accumulated on the positively charged surface of carbon ionic liquid electrode (CILE) with N-butylpyridinium hexafluorophosphate (BPPF6) as binder, and then myoglobin (Mb) was immobilized onto the DNA film by electrostatic interaction to form Mb/DNA/CILE electrode. The direct electrochemistry of Mb was then investigated in detail. A pair of well-defined, quasi-reversible cyclic voltammetric peaks of Mb was obtained with the formal potentials (E0′) at ?0.304 V (vs. SCE) in phosphate buffer solution (PBS, pH 7.0). The Mb/DNA/CILE electrode showed excellent electrocatalytic activity to H2O2 and trichloroacetic acid (TCA) in the range of 1.0–160 μmol/L and 0.5–40.0 mmol/L, respectively. The apparent Michaelis–Menten constants (KM) toward H2O2 and TCA were calculated as 0.42 and 0.82 mmol/L. So, the DNA/CILE had potential to study other proteins.  相似文献   

6.
The surface acid–base property of carboxylic multi-walled carbon nanotubes (MWNTs) is investigated by zero current potentiometry with a new electrochemical measurement system. The pH dependent interface potential variation at the interface of carboxylic MWNTs/solution is investigated by measuring zero current potential Ezcp. In the pH range of 1–11, the pH response of carboxylic MWNTs exhibits two linear relationships according to the following equations: Ezcp = 0.791–0.0535 pH (pH 1–5.1) and Ezcp = 0.643–0.0241 pH (pH 5.1–11), respectively. The intersection at pH 5.1 of two regions indicates the surface pKa value of carboxylic group terminated MWNTs.  相似文献   

7.
The charge accumulation due to peroxidase (POD)-catalyzed reduction of H2O2 in a test solution (4 μL) by Os(II) in a POD/PVI[Os(dmebpy)2Cl]-immobilized layer on an electrode (PVI = poly(1-vinylimidazole), dmebpy = 4,4′-dimethyl-2,2′-bipyridine) was monitored potentiometrically for the detection of H2O2. Before potentiometry, the Os(II)/Os(III) ratio of the modified electrode was controlled by pre-electrolysis at a given potential in a separated electrolysis cell. The redox potential of the Os polymer film in the test solution shifted to the positive side on the addition of H2O2 and reached a constant value due to the accumulation of Os(III) in the film. The total amount of the accumulated charge was determined from the area of the portion corresponding to the redox potential shift on a reversible cyclic voltammogram recorded separately. The low detection limit (5 pmol H2O2) was realized with 82–90% of the recovery percentage.  相似文献   

8.
21-mer peptide acid nucleic acid (PNA) probe specific to 16s–23s rRNA spacer region of Mycobacterium tuberculosis has been covalently immobilized on polypyrrole–polyvinylsulphonate film electro-chemically deposited onto indium-tin-oxide (ITO) glass for detection of complementary target by monitoring guanine oxidation and redox indicators (methylene blue and ruthenium complex) up to 0.1 fmole, 0.1 attomole and 1.0 pmole, respectively within 30 s of hybridization time. The peptide nucleic acid immobilized polypyrrole–polyvinylsulphonate electrode can be used for hybridization detection with complementary sequence in heat-shocked genomic DNA and in serum samples containing genomic M. tuberculosis DNA up to 2.5 pg/μl within about 60 min at 30 °C and can be used 8–9 times.  相似文献   

9.
A tungsten wire covered with Na0.75WO3 acts in potentiometry as a reversible pH electrode having a pH dependent open-circuit potential Eocp with nernstian slope. The mid-peak potential Emp of cyclic voltammograms also depends on pH. At low pH (e.g., pH 2) and slow scan rates (e.g., 2 mV s–1) the voltammetric response is almost completely reversible. At higher pH and faster scan rates, the voltammetric systems exhibit features of increasing irreversibility. Under the conditions of reversibility, the Eocp and Emp differ significantly. Eocp is determined by the proton transfer at the electrode surface; whereas Emp is determined by the electron transfer equilibrium tungsten(VI)/tungsten(V) and the proton transfer at the electrode surface. The difference between Eocp and Emp provides the individual thermodynamic contributions of electron and proton transfer to the overall pH dependent redox electrode. This is the first time that both contributions can be separated for an insertion electrochemical system (thin surface layer). It is also shown for the first time that the mechanism of an ion-sensitive electrode can differ in potentiometry and voltammetry.  相似文献   

10.
An amperometric method for the rapid detection of Escherichia coli (E. coli) by flow injection analysis (FIA) using an IrO2–Pd chemically modified electrode (CME) was developed in this paper. The method is based on a good marker β-d-galactosidase which was found in E. coli strains. β-d-galactosidase was produced by the induction of isopropyl β-d-thiogalactopyranoside (IPTG) and released from E. coli cells through the permeabilization of both polymyxin B nonapeptide and lysozyme to E. coli cells wall. The released β-d-galactosidase could catalyze the hydrolysis of the substrate p-aminophenyl β-d-galactopyranoside (PAPG) in the culture medium to produce 4-aminophenol which was proportional to the concentration of E. coli. Hence, E. coli could be detected by the determination of 4-aminophenol. An IrO2–Pd CME, which showed high sensitivity in determination of 4-aminophenol, was prepared as the electro-detector in FIA. The amplified response current of 4-aminophenol obtained at the IrO2–Pd CME was linear with the concentration of E. coli ranging from 2.0 × 102 to 1.0 × 106 cfu/mL, the detection limit of this method to E. coli was 150 cfu/mL and the complete assay could be performed in 3 h.  相似文献   

11.
We show a great possibility of mediated enzymatic bioelectrocatalysis in the formate oxidation and the carbon dioxide (CO2) reduction at high current densities and low overpotentials. Tungsten-containing formate dehydrogenase (FoDH1) from Methylobacterium extorquens AM1 was used as a catalyst and immobilized on a Ketjen Black-modified electrode. For the formate oxidation, a high limiting current density (jlim) of ca. 24 mA cm 2 was realized with a half wave potential (E1/2) of only 0.12 V more positive than the formal potential of the formate/CO2 couple (E°′CO2) at 30 °C in the presence of methyl viologen (MV2 +) as a mediator, and jlim reached ca. 145 mA cm 2 at 60 °C. Even when a viologen-functionalized polymer was co-immobilized with FoDH1 on the porous electrode, jlim of ca. 30 mA cm 2 was attained at 60 °C with E1/2 = E°′CO2 + 0.13 V. On the other hand, the CO2 reduction was also realized with jlim  15 mA cm 2 and E1/2 = E°′CO2  0.04 V at pH 6.6 and 60 °C in the presence of MV2 +.  相似文献   

12.
In this paper, we present experimental results for excitation coefficients of krypton atoms to several Kr and Kr+ excited levels for E/N (electric field to gas particle number density ratio usually in units of Townsend, 1 Td = 10 21 V m2) values from 7 × 10 20 V m2 to above 1 × 10 17 V m2. The data have been obtained in two different parallel plate self-sustained Townsend discharge drift tubes. The spatial distribution of the emission intensities were recorded and then normalized to give excitation coefficients at the anode, by using the electron flux at this point. The values of these coefficients are placed on an absolute scale by using a standard tungsten ribbon lamp calibrated against a primary blackbody radiation standard. The ionization rates at different E/N are obtained from the spatial emission profiles.The data for atomic krypton levels 2p2, 2p3, 2p5, 2p6, 2p7, 2p8, 3p5 and 3p6 (in Paschen notation) were converted to excitation coefficients by using quenching coefficients from the literature. The emission coefficients of eight 4s24p4 (3P)5p levels of Kr+ have also been measured for E/N values from about 1 × 10 18 V m2 up to nearly 8 × 10 18 V m2.  相似文献   

13.
The electrochemical oxidation of catechol and hydroquinone was investigated using cyclic and differential pulse voltammetries at nanostructured mesoporous platinum film electrochemically deposited from the hexagonal liquid crystalline template of C16EO8 surfactant. The mesoporous platinum electrode has shown an excellent electrocatalytic activity and reversibility towards the oxidation of catechol and hydroquinone redox isomers in 1.0 M HClO4. The oxidation and reduction peak separation (ΔE) has been decreased from 485 to 55 mV for hydroquinone and from 430 to 75 mV vs. SCE for catechol at polished polycrystalline and mesoporous platinum electrodes, respectively. The differential pulse voltammograms in a mixture solution of catechol and hydroquinone have shown that the oxidation peaks became well resolved and are separated by about 100 mV, although the bare electrode gave a single broad oxidation peak. Moreover, the oxidation current of hydroquinone and catechol has been enhanced by a factor of two and four times, respectively, at mesoporous platinum electrode. Using differential pulse voltammetry, a highly selective and simultaneous determination of hydroquinone and catechol has been explored at mesoporous platinum electrode.  相似文献   

14.
Electrode materials for supercapacitors are at present commonly evaluated and selected by their mass specific capacitance (CM, F g−1). However, using only this parameter may be a misleading practice because the electrode capacitance also depends on kinetics, and may not increase simply by increasing material mass. It is therefore important to complement CM by the practically accessible electrode specific capacitance (CE, F cm−2) in material selection. Poly[3,4-ethylene-dioxythiophene] (PEDOT) has a mass specific capacitance lower than other common conducting polymers, e.g. polyaniline. However, as demonstrated in this communication, this polymer can be potentiostatically grown to very thick films (up to 0.5 mm) that were porous at both micro- and nanometer scales. Measured by both cyclic voltammetry and electrochemical impedance spectrometry, these thick PEDOT films exhibited electrode specific capacitance (CE, F cm−2) increasing linearly with the film deposition charge, approaching 5 F cm−2, which is currently the highest amongst all reported materials.  相似文献   

15.
The relationship of the nucleophilicity of alkylamines to their basicity is explored with emphasis on steric hindrance to solvation. The equation n = 1.43(?Σσ1 + δEs) + 6.35, where n is the Swain-Scott nucleophilic value, σ1 is the Taft polarity value, and δEs is the Taft steric value, correlates the nucleophilic constants of 17 common alkylamines and ammonia over two powers of 10 with a correlation coefficient of 0.98. The equation n ? 1.42 δEs = 0.44(pKa + S) + 0.17, where S is the solvation constant, correlates the nucleophilicities of these amines and ammonia with their pKa values over 3 powers of 10 with a correlation coefficient of 0.99. Excessive steric hindrance and nearby functional groups cause deviations from these equations.  相似文献   

16.
A flow mixing calorimeter followed by a vibrating-tube densimeter has been used to measure excess molar enthalpies HmE and excess molar volumesVmE of {xC3H8 +  (1   x)SF6}. Measurements over a range of mole fractionsx have been made at the pressure p =  4.30 MPa at eight temperatures in the rangeT =  314.56 K to 373.91 K, in the liquid region at p =  3.75 MPa andT =  314.56 K, in the two phase region at p =  3.91 MPa andT =  328.18 K, and in the supercritical region at p =  5.0 MPa andT =  373.95 K. The measurements are compared with results from the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on{xCO2 +  (1   x)C2H6} ,{xCO2 +  (1   x)C2H4} and{xCO2 +  (1   x)SF6} reported previously.  相似文献   

17.
Binary (vapor + liquid) equilibrium data were measured for the {carbon dioxide + isopropoxyethanol (iC3E1)} and the {carbon dioxide + isobutoxyethanol (iC4E1)} systems at temperatures ranging from (313.15 to 333.15) K. These experiments were performed with a circulating-type apparatus with on-line gas chromatography. The experimental data correlated well with the Peng–Robinson equation of state using the Wong–Sandler mixing rules.  相似文献   

18.
Electrochemical deposition of PbTe from 50 mM Pb(NO3)2 + 1 mM TeO2 + 0.1 M HNO3 solution onto n-Si(1 0 0) wafers was studied using cyclic voltammetry (CV), chronoamperometry, ex situ SEM, XRD and EDX. Electrochemical behavior of n-Si(1 0 0) electrode in electrolytes 50 mM Pb(NO3)2 + 0.1 M HNO3 and 1 mM TeO2 + 0.1 M HNO3 was also studied. No underpotential deposition (UPD) of Pb and Te onto n-Si was observed in the investigated systems indicating weak Pb–Si and Te–Si interactions. Deposition of Pb and Te on n-Si occurred with overvoltage via 3D island growth. Electrosynthesis of PbTe (NaCl-like structure, a = 0.650 nm) takes place due to codeposition of Pb and Te at potentials E > EPb2+/Pb0 (lead UPD onto tellurium). Cathodic deposition of PbTe onto n-Si(1 0 0) is irreversible – there is no anodic current in the CV curve. Oxidation of PbTe on n-Si is observed only under illumination, when photoelectrons and photoholes are generated in silicon substrate.  相似文献   

19.
This paper describes a novel redox flow battery–single flow acid Cd–chloranil battery. The electrolyte of this battery for both negative electrode and positive electrode is the aqueous intermixture of H2SO4–(NH4)2SO4–CdSO4, the negative electrode is inert metal such as copper foil, and the positive electrode is an insoluble organic material, tetrachloro-p-benzoquinone (chloranil). Typically, the electrolyte is continuously circulated to pass though the cells by means of a single pump as the battery is on duty. There is no requirement for a membrane. Tetrachloro-p-benzo-hydroquinone is oxidized to chloranil at positive electrode and the cadmium ions is reduced to cadmium and electroplated onto the negative electrode during charge. The reverse occurs during discharge. Results obtained with a small laboratory cell show that high efficiencies can be achieved with an average coulombic efficiency of 99% and energy efficiency of 82% over 100 cycles at the current density of 10 mA cm?2.  相似文献   

20.
An ultra-sensitive and highly selective electrochemical label-free aptasensor is proposed for the quantitation of Hg2 + based on the hybridization/dehybridization of double-stranded DNA (dsDNA) on a gold electrode. Thiol-substituted single-stranded DNA (ssDNA) is self-assembled on the gold electrode surface through the SAu interaction. The hybridization of ssDNA with complementary DNA (cDNA) and the consequences of dehybridization in the presence of mercury ions are followed through differential pulse voltammetry (DPV) responses using a [Fe(CN)6]3 −/4  redox probe. The formation of a thymine–Hg2 +–thymine (T–Hg2 +–T) complex is the key to producing a highly selective and sensitive aptasensor for Hg2 + determination. Specifically, the present electrochemical aptasensor is able to quantify Hg2 + ions in concentrations from 5 zeptomolar (zM) to 55 picomolar (pM) with a limit of detection of 0.6 zM, close to the dream of single atom detection, without requiring a complicated procedure or expensive materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号