首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A novel photoelectrochemical (PEC) sensor for mercury ions (Hg2 +) was fabricated based on the energy transfer (ET) between CdS quantum dots (QDs) and Au nanoparticles (NPs) with the formation of T–Hg2 +–T pairs. In the presence of Hg2 + ions, a T-rich single-strand (ss) DNA labeled with Au NPs could hybridize with another T-rich ssDNA anchored on the CdS QDs modified electrode, through T–Hg2 +–T interactions, rendering the Au NPs in close proximity with the CdS QDs and hence the photocurrent decrease due to the ET between the CdS QDs and the Au NPs. Under the optimal condition, the photocurrent decrease was proportional to the Hg2 + concentration, ranging from 3.0 × 10 9 to 1.0 × 10 7 M, with the detection limit of 6.0 × 10 10 M.  相似文献   

2.
A “signal-on” electrochemical sensing strategy was designed for highly sensitive and selective detection of mercury (II) via its induction to three-way junction of DNA (DNA-TWJ). The TWJ consisted of the capture probe that was self-assembled on a gold electrode surface through SAu bond, the signal probe that was labeled with ferrocene (Fc) and contained single T–T mismatch to capture probe, and an assistant probe for the formation of DNA-TWJ upon the presence of mercury (II). This process caused the Fc tag approaching the electrode for fast electron transfer and thus increased the oxidation current. The “signal-on” sensing method could detect Hg2 + ranging from 0.005 to 100 nM. The assay was simple and fast. It showed potential application in on-site and real-time Hg2 + detection.  相似文献   

3.
Anthroneamine derivatives 13 (H2O:DMSO; 9:1, HEPES buffer, pH 7.0 ± 0.1) undergo highly selective fluorescence quenching with Hg2+. The observed linear fluorescence intensity change allows the quantitative detection of Hg2+ between 200 nM/40 ppb—12 μM/2.4 ppm even in the presence of interfering metal ions viz. Na+, K+, Mg2+, Ca2+, Ba2+, Cr3+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Pb2+. Probes 13 and their Hg2+ complexes also show the broad pH resistance for their practical applicability.  相似文献   

4.
A simple and inexpensive laboratory-built flow injection vapor generation system coupled to atomic absorption spectrometry (FI-VG AAS) for inorganic and total mercury determination has been developed. It is based on the vapor generation of total mercury and a selective detection of Hg2 + or total mercury by varying the temperature of the measurement cell. Only the inorganic mercury is measured when the quartz cell is at room temperature, and when the cell is heated to 650 °C or higher the total Hg concentration is measured. The organic Hg concentration in the sample is calculated from the difference between the total Hg and Hg2 + concentrations. Parameters such as the type of acid (HCl or HNO3) and its concentration, reductant (NaBH4) concentration, carrier solution (HCl) flow rate, carrier gas flow rate, sample volume and quartz cell temperature, which influence FI-VG AAS system performance, were systematically investigated. The optimized conditions for Hg2 + and total Hg determinations were: 1.0 mol l 1 HCl as carrier solution, carrier flow rate of 3.5 ml min 1, 0.1% (m/v) NaBH4, reductant flow rate of 1.0 ml min 1 and carrier gas flow rate of 200 ml min 1. The relative standard deviation (RSD) is lower than 5.0% for a 1.0 μg l 1 Hg solution and the limit of quantification (LOQ, 10 s) is 55 ng g 1. Certified samples of dogfish muscle (DORM-1 and DORM-2) and non-certified fish samples were analyzed, using a 6.0 mol l 1 HCl solution for analyte extraction. The Hg2 + and CH3Hg+ concentrations found were in agreement with certified ones.  相似文献   

5.
Electrochemical DNA sensor has been fabricated by immobilizing thiolated single stranded oligonucleotide (ssDNA) probe onto gold (Au) coated glass electrode for meningitis detection using hybridization with complementary DNA (CtrA) in presence of methylene blue (MB). These electrodes (ssDNA/Au and dsDNA/Au) have been characterized using atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetric (CV) technique. The DNA/Au electrode can detect the complementary DNA in the range of 7–42 ng/μl in 5 min (hybridization) with response time 60 s and electrode is stable for about 4 months when stored at 4 °C. The sensitivity of dsDNA/Au electrode is 115.8 μA/ng with 0.917 regression coefficient (R).  相似文献   

6.
In this work, polyvinyl alcohol (PVA) protected silver grass-like nanostructure (PVA–Ag–GNS) with near infrared surface-enhanced Raman scattering (NIR-SERS) activity was prepared and employed to detect DNA and DNA bases. The PVA–Ag–GNS demonstrated high NIR-SERS activity and good optical reproducibility in the detection of adsorbates such as the case of crystal violet, DNA and DNA bases. By using of the tested molecule of thymine, the PVA–Ag–GNS shows a high enhancement factor (EF) of ∼108. For NIR-SERS detection of DNA molecules, Raman signals from the DNA bases of guanine (630 cm−1) and adenine (720 cm−1) are greatly enhanced. For DNA molecules NIR-SERS detection, Raman signals from the DNA bases of guanine (630 cm−1), adenine (720 cm−1) and cytosine (1010 cm−1) are greatly enhanced. The experimental results show that the NIR-SERS spectrum of DNA is dominated by guanine mode, which is followed by adenine and cytosine modes, respectively. Meanwhile, the NIR-SERS signal intensities of the DNA bases increase in the order of thymine (T) < cytosine (C) < adenine (A) < guanine (G). One can conclude that the adsorption strength of the DNA bases in DNA molecule with the silver surface is in the order T < C < A < G, which is different from that of the four DNA bases in individual molecule adsorbed on silver surface (T < A < G < C). On the other hand, the geometry optimization and calculated wavenumber of the complexes of adenine–Ag, guanine–Ag, cytosine–Ag and thymine–Ag for the ground states are performed with DFT, B3LYP functional and the LanL2DZ basis set. The calculated wavenumbers match well with the experimental results. According to our experiment and calculations, DNA base molecules adsorbed on silver surface via the intra-annular nitrogen atom which is adsorbed on the silver nanoparticle and formed metal–molecule complexes by the available lone pair.  相似文献   

7.
A novel biomimetic logic gate sensor for Pb2 + is established using porous alumina membrane nanochannels modified with morpholino and DNA. It is based on electrochemical detection, and the current response from the diffusion flux of Fe(CN)63  is influenced by the steric blockage and charge repulsion in nanochannels. A limit of detection (0.1 nM) and good linear range (0.1 nM–5 μM) for Pb2 + analysis are achieved in the tenth cycle. The sensing strategy shows prospective application in drug release, artificial ion channels, DNA logic gates for controlling biomolecule, and ion translocation.  相似文献   

8.
In 0.2 mol/L HCl–0.22 mol/L HNO3 medium, trace Hg2+ catalyzed NaH2PO2 reduction of HAuCl4 to form gold nanoparticles (AuNPs), which exhibited a strong resonance Rayleigh scattering (RRS) effect at 370 nm. With increasing of [Hg2+], the RRS effect enhanced due to more AuNP generated from the catalytic reaction. Under the chosen conditions, the enhanced RRS intensity at 370 nm is linear to Hg2+ concentration in the range of 5.0–450 × 10−9 mol/L, with a detection limit of 0.1 nmol/L. This RRS method was applied for the determination of Hg in water samples, with high sensitivity and good selectivity, and its results were agreement with that of atomic fluorescence spectrometry.  相似文献   

9.
A selective detector for the improvised explosive, triacetone triperoxide is proposed. This is based on the rapid redox reaction of peroxides (hexamethylene triperoxide diamine, benzoyl peroxide, t-butyl peroxide, triacetone triperoxide and H2O2) with bromide at 55 °C. Consumption of bromide is indicative of the reduction of the R–O–O–R moiety, the appearance of Br2 was found for all except for triacetone triperoxide. The latter was found to breakdown to acetone which rapidly reacts with Br2 producing bromoacetones. The lack of Br2 production is unique to triacetone triperoxide. Double step chronoamperometry (E1 = 700 mV, E2 = 960 mV (vs. Ag/AgCl)) allows for the quantitation of bromine (Br2 + 2e? ? 2Br?) and bromide (2Br? ? Br2 + 2e?) respectively. The results yielded a detection limit of 8.5 µM for triacetone triperoxide with a sensitivity of 0.026 µA µM? 1. The detection limits of 16.3 µM and 14.9 µM were found respectively for HMTD and H2O2 based on the appearance of Bromine. These results indicate a possibility to develop a handheld sensor for TATP dermination.  相似文献   

10.
A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg–DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l 1 for Hg2+ and 2.0 ng l 1 for CH3Hg+. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l 1 of Hg2+ and CH3Hg+ were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.  相似文献   

11.
3,6-Bis(2-thienyl)-1,2,4,5-tetrazine (bttz) reacts with trans-Pt(dmso)2(mes)2, mes = mesityl = 2,4,6-trimethylphenyl, under twofold cyclometallation to yield structurally characterized (μ-bttz-2H+)[Pt(dmso)(mes)]2 with uncoordinated thiophene sulfur atoms and bttz deprotonated in the 3,3′ positions. The structural features include cis-positioned carbanionic ligands, twisted mesityl substituents, S-coordinated dmso ligands with the SO bonds lying in the molecular plane, shortened inter-ring bonds, and rather short Pt–C bonds at 1.998(9)/2.00(1) Å (Pt–Cmes) and 1.985(9)/1.99(1) Å (Pt–Cbttz-2H+). Reversible reduction to {(μ-bttz-2H+)[Pt(dmso)(mes)]2}? causes a high-energy shift of the charge transfer bands and the appearance of an unresolved EPR signal at g = 1.9905.  相似文献   

12.
Electrochemical oxidation of thermally denatured single-stranded DNA (ssDNA) was studied on a room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (IL-CPE). A distinct oxidation peak appeared at +0.772 V (vs. SCE) on the IL-CPE after preconcentration of ssDNA at +0.35 V for 160 s in pH 7.0 phosphate buffer solution (PBS), which was attributed to the oxidation of guanine residue on the ssDNA molecular structure. The results showed an apparent negative shift of the oxidation peak potential and a great enhancement of the oxidation peak current on the IL-CPE compared with that of CPE. The electrochemical parameters of ssDNA on the IL-CPE were further calculated. Under the selected conditions, a linear calibration curve for ssDNA detection was obtained in the concentration range from 10.0 to 110.0 μg mL−1 with the detection limit of 1.5 μg mL−1(3σ).  相似文献   

13.
Doping and functionalization could significantly assist in the improvement of the electrochemical properties of graphene derivatives. Herein, we report a one-pot synthesis of fluorinated graphene oxide (FGO) from graphite. The surface morphology, functionalities and composition of the resulting FGO have been studied using various surface characterization techniques, revealing that layer-structured nanosheets with ~ 1.0 at.% F were formed. The carbon bound F exhibited semi-ionic bonding characteristic and significantly increased the capacitance of FGO compared to GO. Further, the FGO has been employed for the simultaneous detection of heavy metal ions Cd2 +, Pb2 +, Cu2 + and Hg2 + using square wave anodic stripping voltammetry; and a substantial improvement in the electrochemical sensing performance is achieved in comparison with GO.  相似文献   

14.
In this paper, a microchip-based sandwich-type aptasensor is developed for the detection of human thrombin. The SH-aptamer/thrombin/alkaline phosphatase-functionalized aptamer (ALP-aptamer) system was constructed in the microfluidic channels. And the substrate solution containing 4-aminophenyl phosphate (p-APP) was introduced to the microchannels for the end-column electrochemical detection. The on-chip aptasensor has a broad linear response range of 1–100 pM with a detection limit of 1 pM, which shows high sensitivity and specificity. The system was then applied to detect thrombin in human serum sample. Therefore, the on-chip aptasensor has a great promise for detecting and screening ultratrace levels of biomarkers in the complex matrices.  相似文献   

15.

In this paper, the design of a novel sandwich-type electrochemical aptasensor was reported for an ultrasensitive mercury ion (Hg2+) detection in water samples, which labeled with two-labeled aptamer (Apt) sequences. The used Apts were Apt1 and Apt2 as the capture and signal probe, respectively. The Apt1 probe was immobilized on the poly(4-aminobenzoic acid) (p-ABA) and quantum dots (QDs) film as the platform, as well as the Apt2 reporter was labeled with ferrocene. In the presence of Hg2+, the strong coordination complex has been formed between the specific thymine of the Apt1, Hg2+, as well as the thymine of the Apt as T–Hg2+–T adduct. The QDs and p-ABA were applied for increasing the conductivity of platform and suitable binding of the recognition elements. Under the optimized conditions, the constructed aptasensor illustrated either a wide linear relationship between the logarithm of Hg2+ concentration and current, from 0.05 to 100 nM and also an excellent low limit of detection of 0.01 nM. The quality of carefully choosing, an excellent stability and specificity sensitivity of the designed aptasensor, was investigated by spiked tap water samples as real sample. Moreover, the aptasensor exhibits the good reproducibility as well as has high selectivity for the other cations. The recoveries of the Hg2+ assay of the tap water samples were acquired satisfactorily which imply the generated aptasensor can use Hg2+ measurement in the real laboratories.

  相似文献   

16.
Highly luminescent LaF3:Ce3+/Tb3+ nanocrystals were successfully prepared and surface functionalized via Layer-by-Layer technology. These as-prepared nanocrystals are highly resistant to photobleaching and pretty dispersible in aqueous solution. Due to the efficient luminescence quenching of the nanocrystals by nucleic acids, a facile fluorescence quenching method was developed for the detection of trace amount of nucleic acids. Under optimal conditions, the fluorescence intensity was proportional to the DNA concentration over the range of 0.60–25.0 μg mL?1 for calf thymus DNA (ct-DNA) and 0.60–30.0 μg mL?1 for herring sperm DNA (hs-DNA), respectively. The corresponding detection limit is 0.21 μg mL?1 for ct-DNA and 0.31 μg mL?1 for hs-DNA, respectively. The results indicated that the reported method is simple and rapid with wide linear range. Also, the recovery and relative standard deviation of this method are reasonable and satisfactory.  相似文献   

17.
A deoxyribonucleic acid (DNA) biosensor has been fabricated via immobilization of 17 base terminal single stranded DNA (ssDNA) identified from the 16s rRNA coding region of Escherichia coli onto sol–gel derived nanostructured zirconium oxide (NanoZrO2) film. An oligonucleotide probe with a terminal 5′-phosphate group has been attached to the surface of the electrode via affinity of NanoZrO2 for phosphate. The results of hybridization studies carried out with the complementary, non-complementary and genomic DNA reveal that ssDNA/NanoZrO2/ITO bioelectrode has a high selectivity and sensitivity towards hybridization detection with limits of 10?6–106 pM of complementary DNA.  相似文献   

18.
Irradiation and heat treatment were performed on tourmalines of various colors from Antandrokomby, Madagascar. The samples were irradiated with 10 MeV electrons to fluencies of 2 ×1017 cm−2 for 1 h and were heated at 550 °C for 3 h in air. Their electronic and vibrational spectra were investigated by UV–vis, mid-infrared, and WD-XRF spectroscopy for comparison to pristine samples. Changes in the Mn3+ ions after irradiation resulted in darker pink tourmalines, which had absorption peaks at 390 and 520 nm. These samples became colorless after subsequent heat treatment. After irradiation, colorless, light blue and yellow tourmalines displayed a new absorption band at 365 nm. Alteration of the stretching absorption bands and wavenumber after irradiation could be explained by the following reactions:OH + e beam irradiation  O + H°,Mn2+ + e beam irradiation  Mn3+ + e andFe2+ + e beam irradiation  Fe3+ + e.Stretching vibration of the BO3 structure occurred at 1330 cm−1, while the SiO vibration absorption bands were assigned to around 1100 cm−1. Colorless, green, and yellow tourmalines showed high-intensity peaks around 3608 and 3505 cm−1 after irradiation. Pink and dark green tourmalines showed low-intensity peaks at 3605 and 3585 cm−1, respectively. The combination modes of stretching and bending in the range of 4600–4300 cm−1 were split after irradiation and heat treatment, and different color changes occurred after irradiation.  相似文献   

19.
In this article, a new kind of hairpin DNA Electrochemical biosensor using nitroacridone as electrochemical indicator was first designed, and used to detect BCR/ABL fusion gene in Chronic Myelogenous Leukemia (CML). The results indicated that in pH 7.0 Tris–HCl buffer solution, the oxidation peak current was linear with the concentration of complementary strand in the range of 6.2 × 10−8–3.1 × 10−7 mol/l with a detection limit of 5.3 × 10−9 mol/l. This new hairpin DNA electrochemical biosensor demonstrates its excellent specificity for single-base mismatch and complementary (dsDNA) after hybridization, and this probe has been used for assay of PCR product of a real sample with satisfactory result.  相似文献   

20.
The conventionally mixed LSM–YSZ, LSM impregnated YSZ (LSM + YSZ) and Pd impregnated LSM–YSZ (Pd + LSM–YSZ) cathodes, were prepared and evaluated by electrochemical impedance spectroscopy and single cell testing. The electrochemical performance of the impregnated cathodes have been significantly boosted due to the formation of nano-sized LSM and Pd particles on the YSZ and LSM–YSZ substrates, respectively, and in turn, the increased area of the triple phase boundary (TPB) where the O2 reduction reaction occurs, the power densities as high as 1.42 and 0.83 W cm?2 at 750 °C were achieved from single cells with the Pd + LSM–YSZ and LSM + YSZ cathodes, respectively, in contrast to 0.20 W cm?2 from the single cell with the conventional LSM–YSZ cathode. Suggesting the Pd + LSM–YSZ and LSM + YSZ cathodes can be well used for the intermediate temperature solid oxide fuel cells (IT-SOFCs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号