首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid materials formed by the combination of a sodium rich Montmorillonite (MMT), with magnetite nanoparticles (40nm, Fe(3)O(4) NPs) coated with Polyethylenimine polymer (PEI 800g/mol or PEI 25000g/mol) were prepared. The intercalation of the magnetite nanoparticles coated with PEI among MMT platelets was achieved by cationic exchange. The resulting materials presented a high degree of exfoliation of the MMT sheets and a good dispersion of Fe(3)O(4) NPs on both the surface and among the layers of MMT. The presence of amine groups in the PEI structure not only aids the exfoliation of the MMT layers, but also gives to the hybrid material the necessary functionality to interact with heavy metals. These hybrid materials were used as magnetic sorbent for the removal of hexavalent chromium from water. The effect that pH, Cr(VI) concentration, and adsorbent material composition have on the Cr(VI) removal efficiency was studied. A complete characterization of the materials was performed. The hybrid materials showed a slight dependence of the removal efficiency with the pH in a wide range (1-9). A maximum amount of adsorption capacity of 8.8mg/g was determined by the Langmuir isotherm. Results show that these hybrid materials can be considered as potential magnetic adsorbent for the Cr(VI) removal from water in a wide range of pH.  相似文献   

2.
Calcium ferrite nanoparticles with super-paramagnetic behavior were synthesized via simple chemical precipitation method for effective removal of hexavalent chromium from aqueous media. The properties of synthesized nanoparticles were studied by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET), and vibrating sample magnetometer (VSM) measurements. The ferrite nanoparticles have shown polycrystalline nature and high BET specific surface area (229.83 m2/g) with active functional groups on the surface. The adsorption process follows second-order kinetics with the involvement of intra-particle diffusion and adsorption capacity as much as 124.11 mg/g was determined from the Langmuir isotherm. The thermodynamic analysis revealed that the adsorption process was feasible, spontaneous, and exothermic in nature. A three-layer feed-forward back-propagation artificial neural network (ANN) model was employed to predict the removal (%) of Cr(VI) ions as output. Optimal ANN network (4:8:1) shows the minimum mean squared error (MSE) of 0.00161 and maximum coefficient of determination (R2) of 0.984. The adsorption process is mostly influenced by solution pH and followed by adsorbent dosage, initial Cr(VI) concentration, and contact time as illustrated by sensitivity analysis. With small size and high surface area, biocompatibility, ecofriendly nature, easy magnetic separation, and enhanced adsorption capacity towards Cr(VI), calcium ferrite nanoparticles will find its potential application in wastewater remediation.  相似文献   

3.
Biochar (BC) has been widely used as a low-cost adsorbent for the removal of contaminants from water and soil. However, the adsorption ability of BC towards heavy metal oxyanions (e.g., Cr(VI)) is relatively low due to the negatively charged surface of BC. In this study, pristine BC was impregnated with Fe3+ to improve its Cr(VI) adsorption capability. Fe3+-impregnated BC (Fe3+-BC) was successfully synthesized by a simple impregnation method and used for the removal of Cr(VI) from aqueous solution. Various factors affecting the adsorption, such as impregnation ratio, pH, adsorbent dosage, contact time, temperature, and the presence of humic acid, were investigated in detail. Results showed that Fe3+-BC had strong adsorption ability to Cr(VI) with a maximum adsorption capacity of 197.80 mg/g, which were not only significantly higher than that of the pristine BC, but also were superior to many previously reported adsorbents. It was favorable for Cr(VI) adsorption under the condition of acidic and high temperature. The adsorption data obeyed Sips and Langmuir isotherms and the kinetic data were well described by the pseudo-first-order kinetic model. The results herein revealed that the Fe3+-impregnated BC had a good potential as a highly efficient material for adsorption of Cr(VI) from aqueous solution.  相似文献   

4.
Cr(VI) is a major water pollutant from industrial effluent whose concentration is to be reduced within the permissible limit. Present study reports a systematic evaluation of six different natural adsorbents for the removal of Cr(VI) from aqueous solutions in batch process. The adsorption kinetic data were best described by pseudo-second order model. The values of mass transfer coefficient for Cr(VI) adsorption indicated that the velocity of the adsorbate transport from the bulk to the solid phase was quite fast. The effective diffusivity of Cr(VI) removal for all the adsorbents were of the order of 10(-10) m(2)/s which suggested chemisorption of the process. The adsorption process was jointly controlled by film diffusion and intraparticle diffusion. Maximum monolayer adsorption capacities onto the natural adsorbents used were comparable to the other natural adsorbents used by other researchers. The thermodynamic studies and sorption energy calculation using Dubinin-Radushkevich isotherm model indicated that the adsorption processes were endothermic and chemical in nature. FT-IR studies were carried out to understand the type of functional groups responsible for Cr(VI) binding process. Desorption study was carried out with different concentration of NaOH solutions. Application study was carried out using electroplating industrial wastewater.  相似文献   

5.
Novel magnetic Fe3O4@C@MgAl-layered double-hydroxide (LDH) nanoparticles have been successfully prepared by the chemical self-assembly methods. The properties of surface functional groups, crystal structure, magnetism and surface morphology of magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravity-differential thermal gravity (TG-DTG), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The adsorption studies of the novel adsorbent in removing heavy metals Cr (VI) from waste water showed that the maximum absorption amount of Cr(VI) was 152.0 mg/g at 40℃ and pH 6.0. The excellent adsorption capacity of the Fe3O4@C@MgAl-LDH nano-absorbents plus their easy separation, environmentally friendly composition and reusability makes them more suitable adsorbents for the removal of metal ions from waste water.  相似文献   

6.
Summary Synthetic Sorel's cement [3Mg(OH)2 . MgCl2 . 8H2O], is used as a new adsorbent material for removal of chromium(VI) ion from wastewater effluents. Parameters including contact time, adsorbent dosage and pH are examined and optimized. The equilibrium data are fitted very well to the Langmuir and Freundlich isotherms rather than linear. The adsorption isotherm indicates that the monolayer coverage is 21.4 mg Cr(VI) ion per g of Sorel's cement. The adsorbent is considered as a better replacement technology for removal of Cr(VI) ion from aqueous solutions due to its low cost, good efficiency, fast kinetics, and simple preparation. It offers remarkable efficiency for Cr(VI) removal from wastewater compared with many other natural and synthetic adsorbents.  相似文献   

7.
In this work, the effectiveness of surface-modified jacobsite (MnFe2O4) nanoparticles was investigated for the removal and recovery of Cr(VI) from synthetic wastewater. Ten nanometer modified MnFe2O4 nanoparticles were produced to be a new adsorbent using a co-precipitation method followed by a surface redox reaction. The equilibrium time for Cr(VI) adsorption onto modified MnFe2O4 nanoparticles was as short as 5 min, and the adsorption data fit the Langmuir model well. The maximum uptake of 31.5 mg of Cr(VI)/g of modified MnFe2O4 was obtained at pH 2, which was comparable with other common adsorbents such as activated carbon and sawdust. The effects of ligands (EDTA, SO4(2-), NH4+) and ionic strength were studied in a pH range of 2-10. EDTA and SO4(2-) inhibited the adsorption of Cr(VI) over the entire pH range studied, whereas NH4+ enhanced the uptake of Cr(VI) at pH greater than 6.5. The mechanisms leading to Cr(VI) adsorption by modified MnFe2O4 nanoparticles were determined by X-ray diffraction and X-ray photoelectron spectroscopy to be a combination of electrostatic interaction and ion exchange. Regeneration studies indicated the potential reuse of the modified MnFe2O4 nanoparticles without sacrificing adsorption capacity and the possible recycling of Cr(VI) without changing the valence.  相似文献   

8.
阮子宁  刘强  姚金水 《化学通报》2015,78(3):201-201
摘要 重金属污染已成为影响人们生活亟亟待解的问题,它不仅威胁着自然环境的持续发展,更是对人类身体健康提出了严峻的考验。其中,六价铬因为环境污染持续久,危害大,更是得到各国研究者的重视。研究者们研究了各种吸附材料,它们对于六价铬的移除能力以及移除机理不尽相同。本文介绍了Cr(VI)吸附材料分类及其特点,重点分析了聚合物吸附材料在吸附和分离Cr(VI)方面的应用进展。并简要介绍了Cr(VI)吸附过程中的吸附动力学模型和等温方程式,以著名的Langmuir和Freundlich模型为例加以说明,为解决重金属铬离子引起的环境污染尤其水污染问题提供一种借鉴。  相似文献   

9.
The batch removal of Cr(VI) ions from aqueous solution using binary composite microspheres of chitosan and nanoparticles of iron oxide under different conditions has been investigated in this study. The influences of initial chromium concentration, contact time, pH, temperature, and solid-liquid ratio have been reported. The adsorption data was fitted well in the Langmuir and Freundlich models and various static parameters were calculated. The mechanism of adsorption was studied by Fourier Transform Infrared spectroscopy (FTIR).  相似文献   

10.
11.
Adsorption of chromium from aqueous solution using chitosan beads   总被引:1,自引:0,他引:1  
A basic investigation on the removal of Cr(III) and Cr(VI) ions from aqueous solution by chitosan beads was conducted in a batch adsorption system. The chitosan beads were prepared by casting an acidic chitosan solution into an alkaline solution. The influence of different experimental parameters; pH, agitation period and different concentration of Cr(III) and Cr(VI) ions was evaluated. A pH 5.0 was found to be an optimum pH for Cr(III) adsorption, and meanwhile pH 3.0 was the optimum pH for the adsorption of Cr(VI) onto chitosan beads. The Langmuir and Freundlich adsorption isotherm models were applied to describe the isotherms and isotherm constants for the adsorption of Cr(III) and Cr(VI) onto chitosan beads. Results indicated that Cr(III) and Cr(VI) uptake could be described by the Langmuir adsorption model. The maximum adsorption capacities of Cr(III) and Cr(VI) ions onto chitosan beads were 30.03 and 76.92 mg g−1, respectively. Results showed that chitosan beads are favourable adsorbents. The Cr(III) and Cr(VI) ions can be removed from the chitosan beads by treatment with an aqueous EDTA solution.  相似文献   

12.
Multiwalled boron nitride nanotubes (BNNTs) functionalized with Fe(3)O(4) nanoparticles (NPs) were used for arsenic removal from water solutions. Sonication followed by a heating process was developed to in situ functionalize Fe(3)O(4) NPs onto a tube surface. A batch of adsorption experiments conducted at neutral pH (6.9) and room temperature (25 °C) and using the developed nanocomposites revealed effective arsenic (V) removal. The Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms were measured for a range of As(V) initial concentrations from 1 to 40 mg/L under the same conditions. The equilibrium data well fitted all isotherms, indicating that the mechanism for As(V) adsorption was a combination of chemical complexation and physical electrostatic attraction with a slight preference for chemisorption. The magnetite NPs functionalized on BNNTs led to a simple and rapid separation of magnetic metal-loaded adsorbents from the treated water under an external magnetic field.  相似文献   

13.
A new biosorbent has been prepared by coating Chrysophyllum albidum (Sapotaceae) seed shells with chitosan and/or oxidizing agents such as sulfuric acid. This study investigated the technical feasibility of activated and modified activated C. albidum seed shells carbons for the adsorption of chromium(VI) from aqueous solution. The sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration and particle size on adsorption was also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The pseudo-first-order rate equation by Lagergren and pseudo-second-order rate equation were tested on the kinetic data, the adsorption process followed pseudo-second-order rate kinetics, also, isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms, the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 84.31, 76.23 and 59.63 mg Cr(VI)/g at initial pH of 3.0 at 30 °C for the particle size of 1.00–1.25 mm with the use of 12.5, 16.5 and 2.1 g/L of CACASC, CCASC and ACASC adsorbent mass, respectively. This readily available adsorbent is efficient in the uptake of Cr(VI) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.  相似文献   

14.
Polystyrene adsorbent for solid-phase extraction of U(VI) was developed through in situ copolymerization of styrene and divinylbenzene in the presence of tri-n-butylphosphate and its magnetic form was obtained by addition of fine particles of magnetite in an amount of 15 wt% of the total monomers used. The obtained adsorbents were characterized by means of scanning electron microscope, FTIR spectroscopy and X-ray powder diffraction. The adsorption behavior of U(VI) from aqueous nitrate solutions onto non-magnetic adsorbent RI (St–DVB–TBP) and its magnetic form RII (St–DVB–TBP–Fe3O4) at different experimental condition was studied using batch method. The adsorption results were found to fit Langmuir model. The magnetite-containing adsorbent showed higher uptake values relative to the corresponding magnetite-free one. The adsorption of U(VI) onto RI followed pseudo-first order kinetics whereas the adsorption onto RII followed pseudo-second order. Thermodynamic studies revealed that the adsorption process was a spontaneous exothermic reaction. Desorption of the loaded U(VI) was carried out using distilled water and found to be 97 and 93 % for RI and RII, respectively.  相似文献   

15.
The adsorption isotherms of Cr(VI) on kaolinite, montmorillonite, and alumina were adequately treated with Langmuir model showing behavior characteristic of single-layer adsorption. The efficiency of the adsorbents in removing Cr(VI) from water follows the order alumina > kaolinite > montmorillonite > silica. Speciation studies indicate that hydrogen chromate ions were the major adsorbed species and simultaneous adsorption of dichromate ion occurred at concentrations greater than approximately 10(-3) mol L(-1). It is most probable that the mechanism of adsorption of the hydrogen chromate ion at the surface of alumina is predominantly electrostatic adsorption, with outer sphere complex formation.  相似文献   

16.
Mesoporous magnetic Fe3O4@C nanoparticles have been synthesized by a one-pot approach and used as adsorbents for removal of Cr (Ⅳ) from aqueous solution. Magnetic iron oxide nanostructured materials encapsulated by carbon were characterized by scanning electron microscope (SEM), nitrogen adsorption and desorption, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The adsorption performance of the nanomaterial adsorbents is tested with the removal of Cr (Ⅳ) from aqueous solution. The results reveal that the mesoporous magnetic Fe3O4@C nanospheres exhibit excellent adsorption efficiency and be easily isolated by an external magnetic field. In comparison with magnetic Fe3O4 nanospheres, the mesoporous magnetic Fe3O4@C exhibited 1.8 times higher removal rate of Cr Ⅵ. Themesoporous structure and an abundance of hydroxy groups on the carbon surfacemay be responsible for high absorbent capability.  相似文献   

17.
The magnetic poly-(methyl acrylate-divinyl benzene) (MA-DVB) microspheres with micron size were synthesized by modified suspension polymerization method. Through stepwise reaction with methyl acrylate (MA) and ethylenediamine (EDA), the magnetic poly-(MA-DVB) microspheres with surface dendrimer containing amino groups were obtained. The above mentioned magnetic microspheres were applied for the adsorption of hexavalent chromium from aqueous solution. The effects of solution pH value, adsorption temperature, and adsorption and desorption of Cr(VI) were studied. The results showed that the optimum pH value for Cr(VI) adsorption was found at pH=3, and the adsorption capacity increased with the increase in adsorption temperature. The adsorption equilibrium of Cr(VI) was obtained in about 12 min and more than 98% of adsorbed Cr(VI) were desorbed from the magnetic microspheres in about 30 min using Na(2)SO(4) solution. By fitting the experimental data to Langmuir equation, the maximum capacity for Cr(VI) of magnetic poly-(MA-DVB) microspheres was estimated at 231.8 mg/g.  相似文献   

18.
A series of magnetic semi‐interpenetrating polymer network (semi‐IPN) hydrogels was prepared in one‐stage strategy composed of linear poly(vinyl alcohol) (PVA) chains and magnetic γ‐Fe2O3 nanoparticles entrapped within the cross‐linked poly(acrylamide‐co‐vinylimidazole) (poly(AAm‐co‐VI)) network. The influence of PVA, weight ratio of AAm:VI, γ‐Fe2O3, and MBA on the swelling properties of the obtained nanocomposite hydrogels was evaluated. The prepared magnetic semi‐IPN hydrogels were fully characterized and used as absorbent for removal of Pb(II) and Cd(II) from water. Factors that influence the metal ion adsorption such as solution pH, contact time, initial metal ion concentration, and temperature were studied in details. The experimental results were reliably described by Langmuir adsorption isotherms. The adsorption capacity of semi‐IPN nanocomposite for Pb(II) and Cd(II) were175.80 and 149.76 mg g?1, respectively. The kinetic experimental data indicated that the chemical sorption is the rate‐determining step. According to thermodynamic studies, Pb(II) and Cd(II) adsorption on the hydrogels was endothermic and also chemical in nature. The prepared magnetic PVA/poly(AAm‐co‐VI) semi‐IPN hydrogels could be employed as efficient and low‐cost adsorbents of heavy metal ions from water. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The adsorption of Cr(VI) and Ni(II) using ethylenediaminetetraacetic acid‐modified diatomite waste (EDTA‐DW) as an adsorbent in single and binary systems was investigated. The EDTA‐DW was characterized using various analytical techniques, including Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, X‐ray diffraction, scanning electron microscopy and energy‐dispersive spectrometry. The adsorption experiment was conducted by varying pH, adsorbent dosage, initial concentration and temperature. In the single system, the sorption data for Cr(VI) fitted the Langmuir isotherm, but the Ni(II) adsorption data fitted well the Freundlich isotherm. The maximum sorption capacity of Cr(VI) and Ni(II) was 2.9 mg g?1 at pH = 3 and 3.64 mg g?1 at pH = 8, respectively. The kinetic data for both Cr(VI) and Ni(II) followed well the pseudo‐second‐order kinetic model in single and binary systems. Meanwhile, the extended Langmuir and extended Freundlich multicomponent isotherm models were found to fit the competitive adsorption data for Cr(VI) and Ni(II). In addition, in the binary system, the existence of Ni(II) hindered the adsorption of Cr(VI), but the presence of Cr(VI) enhanced the removal of Ni(II). This study provides some realistic and valid data about the usage of modified diatomite waste for the removal of metal ions.  相似文献   

20.
A series of novel the semicarbazone derivatives of calix[4]arene have been synthesized and then immobilized onto amino functionalized magnetic nanoparticles. Magnetic Fe3O4 nanoparticles were prepared by the chemical co-precipitation of Fe(III) and Fe(II) ions and the nanoparticles were modified directly by 3-aminopropyltriethoxy silane (APTES) to introduce reactive amine groups onto the particles’ surface. The characterization of the prepared compounds was made by FT-IR, elemental analysis, TGA/DTG and NMR techniques. The sorption properties of the new calix[4]arene based magnetic sorbents toward Cr(VI) ion were also studied. The results showed that the prepared magnetic nanoparticles were effective sorbents for the removal of Cr(VI) ion. Also, Langmuir and Freundlich isotherm models were applied for Cr(VI) ion sorption by using MN-C2 and it was found that the experimental data confirmed to Langmiur isotherm model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号