首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
不同晶型结构的ZrO2在CO加氢制异丁烯反应中表现出不同的催化性能。尽管单斜相ZrO2在合成气制异丁烯反应中具有最优异的催化性能,但是对于其异构化活性位仍缺乏深入认识。通过研究ZrO2晶型结构对反应性能的影响差异,有利于深入认识ZrO2催化剂上合成气制异丁烯反应的关键影响因素。因此,本研究制备了一系列不同晶型结构的ZrO2催化剂,研究了它们在结构性质及催化CO加氢制异丁烯反应性能方面的差异。相对于四方相和无定型ZrO2,在单斜相ZrO2催化剂表面,有较多的配位不饱和的Zr位点和O位点。配位不饱和的Zr位点是CO吸附活化的位点,有利于CO的转化。而较多的不饱和配位的O位点,为异丁烯的生成提供了更多的碱性位。此外,在单斜相ZrO2催化剂表面,配位不饱和的Zr位点和O位点的存在,抑制了电子向反应中生成的甲酸盐物种转移,因此,甲酸盐物种在催化剂表面吸附较弱,有利于CO加氢生成异丁烯。  相似文献   

2.
采用溶液燃烧法制备出PdO/PdO/Ce1-xPdxO2-δ (PdO/CP)和PdO/Ce1-x-yPdxZryO2-δ (PdO/CPZ)催化剂,通过硝酸处理去除催化剂表面的PdO物种得到对应的PdO/Ce1-xPdxO2-δ (CP)和Ce1-x-yPdxZryO2-δ (CPZ)催化剂。考究四种催化剂(PdO/CP、PdO/CPZ、CP、CPZ)对CO和CH4的氧化活性,并计算得出表面PdO和Pdn+物种的转化频率(TOF)。结果表明Zr的添加对PdO催化剂上CO和CH4的催化氧化活性具有不同的影响。Zr的添加对PdO/CPZ和CPZ催化剂的CO催化活性具有明显的促进作用,前者归因于PdO/CPZ催化剂表面生成了更小颗粒的PdO粒子,后者归因于CPZ催化剂中含有更多的氧空位。对于CH4的催化氧化,Pdn+物种起到关键的作用。由于Zr的掺杂导致CeO2的晶格中Pd物种的含量减少,致使PdO/CPZ催化剂和CPZ催化剂对CH4氧化活性的降低。  相似文献   

3.
研究了Cu和ZrO2/Cu模型催化剂的甲醇水蒸气重整制氢的反应性能, 结果表明, 纯铜催化剂的反应初始活性随着还原温度的增加而显著降低, 并且在失活后的催化剂反应体系中通入少量的氧, 可恢复催化剂的活性. 相对于Cu, ZrO2/Cu催化剂的活性和稳定性显著增加. 催化剂的TPR, XPS以及原位FT-IR表征结果表明, 导致催化剂活性迅速降低的原因为催化剂表面氧物种的逐渐消耗. ZrO2在反应过程中可以稳定铜表面氧以及Cu物种, 从而显著提高了反应活性和稳定性.  相似文献   

4.
采用浸渍法制备了单一载体(Al2O3、ZrO2、CeO2)和ZrO2、CeO2改性的Al2O3复合载体的Ni催化剂,考察了在甲烷部分氧化制备合成气反应中的催化性能。通过N2-物理吸附、H2程序升温还原、X射线衍射、NH3程序升温脱附和程序升温氧化等技术对催化剂进行了表征。结果表明,在单一载体催化剂中,Ni/Al2O3具有较大的比表面积,其初始反应活性较高,但该催化剂表面易形成大量的积炭而快速失活。Ni/ZrO2和Ni/CeO2催化剂比表面积较小,活性金属Ni在其表面分散性差,催化剂具有较低的CH4转化率。而CeO2和ZrO2改性的Al2O3复合载体催化剂,具有较大的比表面积,反应活性明显高于单一载体催化剂。CeO2-Al2O3复合载体催化剂具有最高的反应活性和较好的反应稳定性。同时表明,含CeO2催化剂反应后表面积炭较少,CeO2的储放氧功能增强了催化剂对O2的活化,提高催化剂活性的同时,可以抑制积炭的生成。  相似文献   

5.
通过调控Pd前驱物在CeO2上的沉积方式, 分别制备了以PdO和离子态的Ce1?x Pd x O2?δ 物种为主的 Pd/CeO2催化剂, 并采用X射线光电子能谱(XPS)和拉曼(Raman)光谱确证了这两种Pd物种的存在. 氧气程序升温脱附(O2-TPD)和氢气程序升温还原(H2-TPR)的表征结果显示, 相比于与载体相互作用较弱的PdO物种, 与CeO2相互作用较强的Ce1?x Pd x O2?δ 物种具有更加稳定的Pd—O键. 催化剂的甲烷燃烧反应起燃活性测试结果显示, 以PdO物种为主的催化剂表现出了良好的低温催化性能, 在原料气配比为1%CH4/4%O2-Ar, 空速为60000 mL·gcat-1·h?1的条件下, T10T90分别为275和367 ℃, 而两种以Ce1?x Pd x O2?δ 物种为主的催化剂的T10均超过420 ℃. 催化剂的甲烷程序升温还原(CH4-TPR)表征结果表明, 在升温过程中只有当PdO或Ce1?x Pd x O2?δ 物种被CH4还原后, 催化活性才开始上升. 由于PdO物种的Pd—O键强度较弱, 有利于Pd物种上的晶格氧在较低温度下参与CH4的氧化过程. 而Ce1?x Pd x O2?δ 物种的Pd—O键较稳定, 且在反应条件下离子态Pd2+与反应体系中氧物种的作用较强, 进而抑制了其与CH4的反应, 因此反应的起燃温度较高. 以γ-Al2O3为载体采用相同的方法制备了Pd/γ-Al2O3催化剂, 相关的表征结果进一步证实, 与载体相互作用较弱的PdO物种更容易被CH4还原, 进而具有较高的催化活性. 据此可以认为Pd/CeO2上氧化态的Pd物种被CH4的还原性能是决定其甲烷催化燃烧反应活性的重要因素之一.  相似文献   

6.
采用浸渍法制备了ZrO2为载体负载Ir的催化剂(Ir/ZrO2), 考察了催化剂的CH4催化燃烧性能. 采用X射线衍射(XRD), 拉曼光谱(Raman), X射线光电子能谱(XPS), 氢气程序升温还原(H2-TPR)等技术对催化剂的结构和Ir物种的存在形式进行了表征. 结果表明, Ir/ZrO2催化剂中Ir是以IrO2形式存在的, Ir/ZrO2催化剂的CH4燃烧表观活性随着Ir负载量的增加而提高, 并且催化剂表现出较高的催化活性和良好的反应稳定性. 在低Ir负载量(≤1%)时, CH4燃烧的转换频率(TOF)随着Ir粒子的增大而提高|然而高Ir负载量(≥1%)时, TOF随着Ir粒子的增大保持不变.  相似文献   

7.
董春燕  周燕  塔娜  刘雯璐  李名润  申文杰 《催化学报》2021,42(12):2234-2241
氧化铈由于在氧化和还原气氛下具有快速Ce4+/Ce3+氧化还原循环作用,使其具有优异的储放氧能力,不仅可以分散和稳定金属粒子,还可在界面处与金属物种发生化学键合,并形成活性位点,因此已被广泛应用于多个催化反应体系,且表现出显著的形貌效应.通过对氧化铈形貌进行调控,使其暴露特定(111)、(110)和(100)晶面,已成为调节金属-氧化铈相互作用强度及金属物种电子、几何结构,提高催化性能的有效策略,但对其机制及活性位结构还没有清晰的认识.我们以氧化铈纳米粒子和纳米立方体为载体,其中氧化铈立方体平均尺寸为23 nm,主要暴露6个{100}晶面,边缘和截角暴露少量{110}及{111}晶面;球形氧化铈纳米粒子平均尺寸为11 nm,主要暴露{111}晶面;并进一步将2.0 wt%Pd物种分散在氧化铈立方体和球形纳米粒子上,通过扫描透射电子显微镜(STEM)和X射线光电子能谱(XPS)等研究了钯物种在氧化铈球形粒子和立方体上的原子结构和化学环境,进而分析了纳米结构氧化铈形貌对钯物种分散的影响.在球形氧化铈纳米粒子上主要形成了平均尺寸为2.0 nm的非晶态Pd纳米粒子以及极小的Pd物种,这主要是因为球形氧化铈纳米粒子上丰富的表面氧空位可通过Pd-CeO2强相互作用和Pd物种紧密键合.氧化铈立方体上的晶态Pd粒子尺寸为2.9 nm,金属与载体之间具有明显的界面,且Pd原子嵌入到氧化铈晶格中.同时,CO化学吸附测试也证明了氧化铈球形粒子上的钯分散度(70%)高于氧化铈立方体(52%).对于甲烷燃烧反应,主要涉及发生在金属粒子表面的PdO/Pd氧化还原循环,即Pd被O2氧化,PdO被CH4还原,富氧条件下决速步骤是PdO对CH4中C?H的活化,因此氧化铈立方体表面大尺寸的晶态Pd粒子被氧化后更容易被CH4还原,有利于PdO/Pd氧化还原循环,从而具有更高的活性和稳定性;然而在CO氧化反应中Pd/CeO2却呈现了相反的形貌效应,这是由于该反应遵循Mars-van Krevelen机理:CO吸附在金属Pd上,化学吸附的CO移动到钯-氧化铈界面,被氧化铈晶格氧氧化成CO2,产生的氧空位被表面氧补充,最后表面氧空位被气相氧补充;由于氧化铈球形粒子上的较小尺寸Pd具有更大的钯-氧化铈界面周长和更强的氧物种移动性,更易完成界面处的氧化还原循环,因此具有更高的CO氧化活性.  相似文献   

8.
Co/ZrO2催化剂的结构及TPR性能研究   总被引:1,自引:0,他引:1  
采用XRD和TPR技术研究了CoZrO体系催化剂的物相结构及还原性能,并以CO氧化反应为探针考察了催化剂的氧化活性.结果表明,钴的存在会阻止tZrO2→混合相→mZrO2的转变和ZrO2颗粒的增长;高温焙烧后,部分钴氧化物与载体ZrO2形成固溶体.Co/ZrO2催化剂中的钴以Co3O4的形式存在,钴锆之间的相互作用有利于钴的分散.随着Co负载量增加,催化剂的CO氧化活性提高.  相似文献   

9.
采用共沉淀法制备了NiFe2O4和NiFe2O4/ZrO2催化剂,用TGA考察了其热化学法,CO2高温分解反应性能。通过对反应前后催化剂的表征发现,反应高温使两种催化剂都发生了明显的烧结,导致在热还原反应中形成的还原态氧化物不能完全被CO2氧化从而降低了催化剂的反应性能;ZrO2的加入对于提高催化剂的热稳定性以及循环反应稳定性具有重要的作用。在高温反应炉中考察了NiFe2O4/ZrO2的CO2分解实验,结果表明,提高热还原温度可以提高CO产量,然而,随着循环次数的增加CO的产量降低得更明显。  相似文献   

10.
通过共沉淀法制备了ZrO2和Al2O3载体,采用等体积浸渍法制备了MoO3质量分数为5%的Mo/ZrO2和Mo/Al2O3催化剂,并用于甲烷化反应。在三种反应气氛下对两种预硫化的Mo基催化剂进行评价,发现ZrO2载体均可显著促进甲烷化反应,同时能够促进水汽变换(WGS)反应。通过XRD、H2-TPR、XPS和TEM等表征发现,两种载体上Mo物种的硫化程度以及暴露的活性位数量不同,从而导致两种催化剂上催化性能差异显著。与Mo/Al2O3相比,Mo/ZrO2催化剂上的MoO3更易被还原,硫化程度也更高,并且Mo4+的含量更高,Mo6+的含量更低。虽然ZrO2载体上MoS2尺寸较大,边位置的Mo比例有所降低,但是由于MoS2沿ZrO2颗粒表面弯曲生长,使得MoS2基面成为反应的活性位;因此,Mo/ZrO2催化剂在甲烷化与WGS反应中表现出更优异的催化性能。  相似文献   

11.
天然气储量巨大,被广泛应用于发电和工业窑炉等.甲烷作为天然气中最主要的成分,是氢碳比最高的碳氢化合物,其温室效应显著.因此,不完全燃烧所引起的CH4排放,不仅导致能源浪费,同时也可造成环境污染.与传统火焰燃烧相比,CH4催化燃烧具有更高的燃烧效率,并可显著地减少大气污染物(CO,NOx和未完全燃烧的烃类)的排放.贵金属Pd催化剂对CH4催化燃烧表现出优异的催化性能,其中Pd颗粒的尺寸、Pd的化学状态、载体性质及其与Pd之间的相互作用等对其活性有显著影响.本文以不同温度(600,800,1000和1200℃)焙烧所得SnO2为载体,通过等体积浸渍法制备了Pd/SnO2催化剂,研究了SnO2焙烧温度对CH4催化燃烧性能的影响.结果表明,所制备的SnO2均为锐钛矿结构,并且随着SnO2焙烧温度的升高,晶型愈加完美,晶粒尺寸显著增大.催化剂中引入的Pd以高分散形式存在,CH4催化燃烧反应活性随着载体SnO2焙烧温度的升高而显著提高,其中Pd/SnO2(1200)表现出最高的CH4燃烧活性,起燃温度和最低全转化温度分别为265和390℃.在反应温度为300℃时,Pd/SnO2(1200)上甲烷的反应速率是Pd/SnO2(600)的36倍.XPS等结果表明,随着SnO2焙烧温度的升高,Pd的化学状态也有所差异:对于低温焙烧的SnO2(<800℃),Pd以Pd4+的形式进入到SnO2晶格内;随着焙烧温度的升高(>1000℃),Pd以Pd2+物种的形式存在于载体表面.结合活性评价结果推测,Pd的化学状态可能并非是影响催化剂活性的最关键因素.TEM等结果表明,Pd/SnO2(1000)上PdO的(101)晶面与载体SnO2的(101)晶面相近,分别为0.2641 nm和0.2638 nm.O2-TPD和CH4-TPR结果表明,Pd/SnO2(1200)催化剂上单位Pd原子上O2的脱附量是Pd/SnO2(600)的3倍,单位Pd原子上CH4的消耗量比催化剂Pd/SnO2(600)高出45%.因此,PdO和SnO2在构型上存在的晶面匹配可提高催化剂对O2的活化能力.综上所述,SnO2和贵金属之间的晶格匹配有利于氧在Pd-SnO2界面的活化,同时载体SnO2中的晶格氧亦可以通过"氧反溢流机理"补充到表面PdO/Pd上,从而增强催化剂对O2的吸附和活化能力,并提高CH4催化燃烧反应性能.升高SnO2的焙烧温度可强化SnO2和贵金属之间的晶格匹配,从而使催化剂活性随着SnO2焙烧温度升高而增大.  相似文献   

12.
A nearly pure monoclinic nanocrystalline zirconia   总被引:1,自引:0,他引:1  
Generally, monoclinic zirconia is considered to be much more difficult to prepare at low temperatures and particularly in a pure state. The present work is the first example that shows that the hydrous zirconia formed by precipitation can yield a nearly pure nanocrystalline monoclinic zirconia at a temperature as low as 320 °C. The crystallite size of the monoclinic zirconia produced in the present work is around 15 nm, and it does not change appreciably as calcination temperature is increased from 320 to or above 400 °C. Such a small monoclinic crystallite arises from some of the chemical and physical factors built into the solution-gelation-xerogel process such as acidic preparation-pH, rapid precipitation, and moderate aging time and drying temperature, which result in a structure different from those of the existing zirconium hydroxides. In addition, the hydrous zirconia exhibits a unique thermal behavior in two respects: first, a sudden weight drop in the region of exothermic peak of the thermogravimetric curve is seen, suggesting that the main decomposition of the hydrous zirconia occurs in this region; second, there is an endothermic peak at high temperature in the differential thermal analysis curve, indicating the presence of coordinated water in the hydrous zirconia.  相似文献   

13.
《Comptes Rendus Chimie》2015,18(10):1094-1105
Nanocrystalline tetragonal zirconia powders have been synthesized by aqueous combustion using glycine (Gly) as a fuel and zirconyl nitrate (ZN) as an oxidizer. The effect of the fuel-to-oxidant molar ratio on the structural and morphological properties of nanocrystalline zirconia powders was studied. Thermodynamic modeling of the combustion reaction showed that the increase in the Gly:ZN molar ratio leads to the increase in theoretical combustion temperature, heat of combustion and amount of produced gases. Powder properties were correlated with the nature of combustion and results of thermodynamic modelling. The increase in the Gly:ZN molar ratio produces more agglomerated powders characterized by a lower degree of uniformity, a lower specific surface area and a slightly bigger crystallite size. On the other hand, the presence of hard agglomerates suppresses the volume expansion, stabilizing tetragonal zirconia, as confirmed by Rietveld refinement. The absence of cubic zirconia was confirmed by FTIR and Raman Spectroscopy. The increase in the calcination temperature led to more agglomerated, compact and less uniform powders. The nanocrystalline nature of zirconia is the reason for the formation of bigger crystallites, the increase in the relative amount of monoclinic phase and sample sintering after calcination at high temperature. The highest measured specific surface area of zirconia was 45.8 m2·g−1, obtained using a fuel-lean precursor.  相似文献   

14.
制备了一种粘附在堇青石蜂窝陶瓷载体上的CeO_2-Y_2O_3(CeY)复合氧化物新涂层.以二氧化铈和柠檬酸钇为前驱体,制备过程中无有害物质产生,对环境友好.CeY涂层和Pd/CeY催化剂通过SEM、EDX、XRF和Raman光谱等表征.结果表明,此涂层的粘结强度高,对活性组分的吸附性能好,适合用来负载钯催化剂.Y_2O_3大部分进入了峰窝陶瓷的孔道内,CeO_2和Pd物种则富集在载体的表面.以CO、甲苯和乙酸乙酯的催化燃烧来评价Pd/CeY催化剂的性能,此催化剂具有较好的催化活性和热稳定性.500℃焙烧的催化剂,CO、甲苯和乙酸乙酯的T_(99)(转化率99%以上所需的最低反应温度)分别为150、220和310℃;1050℃焙烧的催化剂,它们的T_(99)分别为180、250和330℃.高温焙烧的催化剂,活性物种PdO的晶粒增大,这可能导致催化剂的活性下降.  相似文献   

15.
单斜及四方晶相ZrO2催化CO加氢反应性能的比较   总被引:7,自引:0,他引:7  
李文  殷元骐 《分子催化》1999,13(3):186-192
研究了以纯单斜(m)和四方(t)晶相ZrO2为催化剂的CO加氢反应.尽管两种晶相催化剂均有较高的低碳烯烃的选择性,但是也发现了两者催化性能的显著差别.m-ZrO2催化剂对异丁烯有突出的选择性,而t-ZrO2催化剂,则只有乙烯和丙烯,几乎没有C4烯烃的选择性.室温下CO吸附的原位IR谱测试可见,只有在t-ZrO2催化剂上观测到不可逆含氧吸附物种.吡啶吸附的Raman谱显示出它们之间表面性质的差别,m-ZrO2催化剂表面存在等强度的Lewis和Bronsted酸中心,而在t-ZrO2催化剂表面几乎只有Bronsted酸中心.催化过程的一些模型分子电子结构计算也表明了ZrO2催化剂对低碳烯烃选择性内在的电子结构条件.我们推测CO在m-ZrO2催化剂表面的孪式吸附物种可能是导致异丁烯产物的根源  相似文献   

16.
采用浸渍法制备了介孔Al2O3(M-Al2O3)负载PdO催化剂,考察了其催化CH4燃烧反应性能.结果表明,以M-Al2O3为载体的PdO催化剂活性比普通Al2O3载体高得多,这很可能与M-Al2O3的孔道结构对PdO物种的限域作用有关.随着PdO/M-Al2O3催化剂焙烧温度的升高,甲烷催化燃烧活性先增加后降低,其中700oC焙烧的催化剂活性最高,400oC反应时CH4转化率为91%.此时Pd物种主要以PdO颗粒形式高度分散在载体的介孔孔道内,而高温焙烧时,Pd物种主要以Pd和PdO的混合晶相存在.尽管900oC焙烧制得的催化剂上CH4的转化率降低,但TOF值最大,这可能与该催化剂中同时存在金属Pd和PdO有关.  相似文献   

17.
潘喜强  杨向光 《应用化学》2014,31(2):177-181
Pd/ZrO2是甲烷低温燃烧研究较为广泛的催化剂,其中载体ZrO2对稳定PdO起到了重要作用。 采用水热法合成了纯相的M-ZrO2和T-ZrO2,然后采用浸渍法制备了Pd/M-ZrO2和Pd/T-ZrO2催化剂,并考察了不同晶型ZrO2对催化剂的活性和稳定性的影响。 结果表明,Pd/M-ZrO2催化剂的活性和稳定性明显优于Pd/T-ZrO2。 结合XRD、TEM和TPO表征结果,发现Pd/M-ZrO2活性高的原因是PdO分散性更好,Pd/M-ZrO2较好的稳定性与PdO和ZrO2的作用方式有关。  相似文献   

18.
Najar  H.  Saïd Zina  M.  Ghorbel  A. 《Kinetics and Catalysis》2010,51(4):602-608
Palladium-based catalysts were prepared by the ion-exchange method with dealuminated HY zeolite as support. The support dealumination was realised using acid solution of HNO3, HCl or H2SiF6. The high activity of prepared catalysts for methane combustion was observed. This activity was dependent on the Al concentration, structural and textural properties of the support changed after the dealumination. Especially, Pd loaded on supports developing a second pore system, and having the highest Si/Al ratio, was more active than that on unmodified supports. It was also expected that the active sites in the methane combustion, which are suspected to be PdO, were influenced by the acidic properties of the support.  相似文献   

19.
PdO/Al2O3 catalysts prepared by glow discharge plasma treatment followed by thermal calcination show a much higher dispersion and a better catalytic activity for methane combustion at relatively low temperatures. The dispersion of palladium active species by such plasma prepared catalysts is 29.7%, 5.4 times higher than that of conventional catalysts. XPS analysis indicates that a surface enrichment of Pd active species (PdO) has been achieved after plasma treatment. The surface atomic composition of PdO of plasma prepared catalysts reaches 10.5%. XRD characterization also confirms a wellcrystallized PdO phase present on the plasma prepared catalyst. The lightoff temperature of the plasma prepared catalyst is 370°C, 50°C lower than that obtained from the conventional catalyst.  相似文献   

20.
The detailed thermal characterization of Pd/TiO2–Al2O3 catalysts under oxygen and hydrogen atmosphere was conducted by means of thermal gravimetric analysis/differential scanning calorimetry (TG/DSC), temperature-programmed reduction (TPR) and temperature-programmed desorption (TPD). A simultaneous TG/DSC measurement revealed that the heat evolved during oxygen adsorption at 25 °C varied slightly with the supports and had a higher value for the smaller palladium crystallite. Hydrogen chemisorption and BET measurements revealed that the coating of Pd/Al2O3 catalysts with titania modified the support character to achieve a high dispersion of palladium. TPR and TPD characterizations of oxidized samples further demonstrated that the coating of Pd/Al2O3 catalysts with titania promoted the reduction and decomposition of PdO into palladium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号