首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以可生物降解材料硬脂酸为载体, 以葛根总黄酮为模型药物, 采用乳化蒸发-低温固化法制备固体脂质纳米粒. 采用透射电镜研究载药纳米粒形态, 激光粒度分析仪测定其粒径, X射线衍射仪进行物相鉴别, 并对纳米粒的包封率及体外释药特性等进行了研究. 分析结果表明, 所制备硬脂酸固态脂质纳米粒为类球实体, 粒径分布比较均匀, 平均粒径为(263.82±3.6) nm, 包封率为(67.53±0.12)%. X射线衍射分析证明药物以分子或细小粒子分散于脂质骨架中. 体外释药研究结果表明, 纳米粒体外释药先快后慢, 12 h累积释药50%, 包封于降解材料骨架内的药物通过骨架溶蚀缓慢释放. 药物的体外释放符合Higuchi方程.  相似文献   

2.
利用溶液法预先制备壳聚糖(Cs)-蒙脱土(MMT)复合材料(Cs-MMT),以Cs-MMT、Cs为原料,采用反相悬浮聚合法制得一种新型药物缓释体系阿司匹林-蒙脱土-壳聚糖载药微球(Asp-MMT-Cs)。采用FT-IR、SEM表征了Cs-MMT和Asp-MMT-Cs载药微球的结构及形态;设计正交实验优化了Asp-MMT-Cs载药微球的制备工艺;通过体外释放实验探讨了载药微球在不同模拟释放液中的释药规律。结果表明:所得微球球形度好,粒径分布较均匀;最优工艺制得的载药微球平均粒径为81.20μm,载药量为9.61%,包封率为76.78%。该缓释体系具有pH敏感性,更倾向于在pH较高的磷酸盐缓冲溶液中释放。  相似文献   

3.
王静云  宋丹丹  包永明 《化学学报》2012,70(10):1193-1200
利用1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)和4-二甲氨基吡啶(DMAP)催化硬脂酸(SA)与具有良好生物相容性的普鲁兰多糖(Pullulan)反应, 将硬脂酸接枝在普鲁兰分子链的羟基上, 得到取代度不同的疏水改性两亲性普鲁兰多糖衍生物PUSA1, PUSA2 及PUSA3, 其临界胶束浓度分别为50, 32, 18 μg/mL; 透射电镜(TEM)图像显示透析法制备的PUSA 自组装颗粒为球形. 以阿霉素为模型药物制备了PUSA 载药纳米粒, 考察了载药纳米粒的载药量、包封率和体外药物释放. 结果表明PUSA3 的包封率高达84%, 载药量达7.79%. 药物可在37 ℃, pH=7.4 的PBS 溶液中持续释放90 h 以上. 细胞毒性实验(MTT)结果显示当PUSA 的浓度高达1000 μg/mL 时48 h 后细胞存活率依然在90%左右. 流式细胞及荧光分析表明载药纳米粒的细胞摄取率远远高于游离药物. 说明PUSA 是一种新型的有潜在应用价值的药物载体材料.  相似文献   

4.
本研究将具有肝靶向性分子甘草次酸(GA)偶联在具有生物相容性和生物可降解性的天然高分子海藻酸钠(ALG)上,合成了甘草次酸改性的海藻酸钠(GA—ALG);对广谱抗癌药物阿霉素(DOX)进行包封,制备了肝靶向载药纳米粒,并考察了GA—ALG载药纳米粒的体外释药性能和对肝癌细胞的抑制作用.利用核磁、红外和元素分析技术对GA—ALG结构和GA取代度进行了表征;对GA—ALG载药纳米粒的形貌、粒径、表面Zeta电位等进行了测定,结果显示纳米粒具有较规则球形结构,其水合粒径为(214±11)nm.GA—ALG载药纳米粒在模拟生理条件下(pH7.4)可持续释药长达20天;MTT结果显示GA-ALG载药纳米粒对7703肝癌细胞的具有明显的杀伤作用.  相似文献   

5.
以普鲁兰多糖为主链, 通过乙酰化反应合成了疏水性的乙酰普鲁兰(PA), 然后以N,N′-二环己基碳二亚胺(DCC)为偶联剂, 4-二甲氨基吡啶(DMAP)为催化剂, 将叶酸与PA偶联(FPA); 采用1H NMR和X射线晶体衍射(XRD)等方法对产物结构进行了表征. 采用溶剂扩散法制备包载表阿霉素的PA和FPA纳米粒, 载药纳米粒形态为球形, 动态光散射粒径分析显示载药纳米粒粒径随载药量增加而增大. 透析法测定纳米粒中表阿霉素的体外释放表明, FPA纳米粒中药物释放速度快于PA纳米粒; 采用激光共聚焦显微镜观察PA/EPI及FPA/EPI纳米粒在KB细胞的摄取情况, 结果表明, FPA/EPI纳米粒进入细胞主要通过叶酸受体途径, 而PA/EPI纳米粒进入细胞与叶酸受体无关, 提示FPA将成为具有一定肿瘤靶向作用的新型载体.  相似文献   

6.
以主链含腙键的聚乙二醇大分子(PEG-NH-N=CH-OH)为引发剂,通过开环聚合己内酯(ε-CL),制备了一种具有pH响应性的两亲性嵌段共聚物PEG-NH-N=CH-PCL.运用核磁共振(~1H NMR)、透射电镜(TEM)和动态光散射(DLS)等对聚合物的结构、胶束的形貌及粒径进行表征.结果表明,聚合物胶束呈规整球形且分布均匀,平均粒径约98nm,pH 5.0时胶束粒径显著增加.负载阿霉素(DOX)的聚合物胶束的载药量为16.4%,包封率为57.4%.体外释放研究表明,pH 5.0时药物释放速率比pH 7.4时快,48h后累计释放率达91.1%.因此,该pH响应性聚合物胶束作为抗癌药物载体具有潜在的应用价值.  相似文献   

7.
杨文华  俞淑英  陈胜  刘也卓  邵正中  陈新 《化学学报》2014,72(11):1164-1168
丝蛋白具有良好的生物相容性, 生物可降解性以及无免疫原性. 利用丝蛋白独特的亲疏水多嵌段共聚物结构特征和构象转变机制, 通过乙醇诱导和冷冻相结合的自组装方法制备得到丝蛋白纳米微球后, 再在纳米微球表面包覆阿霉素, 成功获得了负载阿霉素的丝蛋白纳米载药微球. 该载药丝蛋白纳米微球的尺寸为350~400 nm, 具有圆球形态并且分散性能良好; 其载药率为4.6%, 包封率大于90%, 在磷酸缓释溶液中的释放可达7天以上. 此外, 研究发现其缓释行为具有pH响应性, 在pH=5.0的磷酸缓冲溶液中的缓释量明显大于在pH=7.4的缓冲液中. 体外细胞培养结果显示, 纯丝蛋白纳米微球基本没有细胞毒性; 而负载有阿霉素的丝蛋白纳米微球能明显抑制癌细胞(Hela细胞)的增殖, 且24 h和48 h的培养结果表现出与单纯药物相同的药效. 因此, 该负载阿霉素的丝蛋白纳米微球在临床癌症淋巴化疗方面具有潜在的应用价值.  相似文献   

8.
弓韬  黄昱  郭国英  苏丹  梁文婷  董川 《应用化学》2019,36(2):161-169
采用共沉淀法制备得到了线性麦芽糊精聚合物功能化的Fe3O4磁性纳米粒子(LM-SP-MNPs),通过傅里叶变换红外光谱、透射电子显微镜、热重分析等技术对其结构、形貌进行了表征。 其粒径大小为(12±2) nm。 选取抗癌药物盐酸阿霉素(DOX)作为模型药物,运用荧光光谱法研究了LM-SP-MNPs的载药性能和释放行为,探讨了pH值对LM-SP-MNPs药物释放性能的影响。 最适pH条件下,LM-SP-MNPs对盐酸阿霉素的最大吸附量约为357.1 mg/g,吸附等温线符合Freundlich等温吸附模型。 LM-SP-MNPs与盐酸阿霉素的复合物(DOX@LM-SP-MNPs),在37 ℃的条件下药物在酸性条件下的释放效率大于中性条件。 pH=5.3时,盐酸阿霉素在7 h内的累积释放率为26.9%。 此外,细胞毒性试验表明,LM-SP-MNPs具有良好的生物相容性,而DOX@LM-SP-MNPs和肝癌细胞共培养后可以明显杀死HepG2肝癌细胞。  相似文献   

9.
以丙烯酸异丁酯(IBA)、甲基丙烯酸二甲氨乙酯(DMAEMA)、丙烯酸羟乙酯(HEA)作为聚合单体,利用种子微乳液聚合制备了一种具有核-壳结构的聚合物纳米胶粒P(DMAEMA-co-IBA)/P(IBA-co-HEA);采用红外光谱仪、动态激光光散射仪、透射电镜分析了所得胶粒的结构和形貌;将叶酸成功嵌入聚合物胶粒,得到直径约293nm的球形载药胶粒,利用药物体外释放测定了药物运载性能.结果表明,所制备的共聚物纳米胶粒呈球形,直径约275nm,粒径分布较窄,并具有核-壳结构;其对药物具有缓释性和pH响应性.  相似文献   

10.
《高分子学报》2021,52(10):1298-1307
为了拓展多组分聚合方法在药物载体领域应用,基于铜催化的炔烃多组分聚合设计合成含有二硒键的氧化还原响应型两亲性聚合物,与阿霉素(DOX)在水溶液中通过自组装方式构建纳米载药胶束.通过实验技术手段对纳米载药胶束表征可知,纳米载药胶束的粒径在130 nm左右,临界胶束浓度(CMC)值为0.23 mg/mL,在人体正常生理条件下结构稳定.肿瘤中含有浓度较高的活性氧(ROS)或谷胱甘肽(GSH),聚合物主链中二硒键在氧化还原条件下断裂,导致聚合物降解,DOX从纳米载药胶束中逐渐释放,且累积释放量可达100%,并发现该类载药胶束在GSH环境中药物释放性能优于ROS环境.该工作通过多组分聚合方式可以便捷构建氧化还原双重响应型的两亲性聚合物,在肿瘤微环境中表现出特异的降解性能,为开发设计智能响应型高分子药物载体提供新的思路.  相似文献   

11.
利用生物相容性良好的γ-聚谷氨酸(γ-PGA)和壳聚糖(CS)制备表面分别带正、负电荷的pH响应性纳米颗粒,并用其包载抗生素阿莫西林。利用动态光散射仪、傅里叶红外光谱仪、X射线衍射和透射电镜对载药纳米颗粒的结构和形貌进行表征,考察两种纳米载体的pH响应释放药物能力及其对细胞的毒性。研究结果表明,带负电荷的纳米颗粒显示出更好的pH响应控释药物的能力。在模拟胃部环境下,载药纳米颗粒的粒径大小稳定在200~300 nm,药物释放量仅为25%。在中性至弱碱性的肠道细胞间隙下,其粒径增大到1μm左右,药物释放量增加到85%。此外,细胞毒性实验表明该药物载体对细胞没有毒性,载药纳米颗粒对肠道细菌的抑制效果比游离药物的更好。  相似文献   

12.
羧甲基壳聚糖磁性纳米粒子的合成及应用   总被引:1,自引:0,他引:1  
通过合成油酸修饰的Fe3O4纳米粒子和羧甲基壳聚糖直接包埋油酸修饰的Fe3O4纳米粒子的两步合成法制备了羧甲基壳聚糖磁性纳米粒子。采用透射电子显微镜、傅里叶变换红外光谱、振动样品磁强计和同步热分析测试技术对制备的羧甲基壳聚糖磁性纳米粒子进行了表征。所得磁性纳米粒子呈规则球形,粒径约为10 nm;表面含羧基,且具有很好的顺磁性和稳定性。考察了羧甲基壳聚糖磁性纳米粒子对阿霉素的载药量和对阿霉素在磷酸盐缓冲溶液中的缓释性能。结果表明,磁性纳米粒子对阿霉素展示了较高的载药量(91.8 mg/g),结合了阿霉素的磁性复合物对阿霉素的缓释作用明显,说明制备的羧甲基壳聚糖磁性纳米粒子有望作为治疗肿瘤的纳米磁靶向药物输送载体。  相似文献   

13.
合成了一种甘露醇引发的星型共聚物甘露醇-聚乳酸-聚乙三醇1000维生素E琥珀酸酯(M-PLATPGS).利用纳米沉淀法制备载紫杉醇M-PLA-TPGS纳米颗粒.纳米颗粒近似球形,粒径分布较窄.对载药纳米颗粒进行粒径、表面电荷、载药量、包封率和体外药物释放的表征,结果表明,体外药物释放呈双相释放模型,M-PLA-TPGS纳米颗粒在前列腺癌PC-3细胞中的摄取水平要高于PLGA和PLA-TPGS纳米颗粒.载紫杉醇M-PLA-TPGS纳米颗粒对于前列腺癌细胞的的毒性显著高于载紫杉醇PLA-TPGS纳米颗粒和商业制剂Taxol,证明星型M-PLA-TPGS聚合物作为纳米药物载体优于线性PLGA和PLA-TPGS聚合物.  相似文献   

14.
利用聚氧乙烯硬脂酸酯(Brij78)和帕米膦酸二钠制备新型表面活性剂Pa-Brij78,以此为表面活性剂,聚乳酸-羟基乙酸共聚物(poly(lactic-co-glycolic acid),PLGA)为油相,采用水包油包水的微乳液法制备载卵清蛋白(ovalbumin,OVA)的表面带有磷酸根的PLGA纳米粒,再用共沉淀法在其表面修饰一层磷酸钙,并装载寡核苷酸Cp G,形成一种核-壳结构的复合载药纳米粒Cp G/Ca P/PLGA(OVA).通过动态光散射粒度仪、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)对纳米粒进行表征,并测定OVA、Cp G的载药量、包封率.结果表明以Pa-Brij78为表面活性剂制备的PLGA(OVA)纳米粒确实能被磷酸钙修饰,粒径增大40~60 nm,表面变粗糙,XRD测得该磷酸钙层的主要存在形式为Ca3(PO4)2.OVA平均载药量为5%,包封率大于80%;Cp G平均载药量为0.47%,平均包封率为89.9%.  相似文献   

15.
采用溶剂热法合成磁性Fe_3O_4纳米粒子,并以此为基底设计制备了一种具有pH响应核壳结构的磁性纳米复合材料Fe_3O_4@ZIF-8@PA.该材料的比饱和磁化强度可达35.46 A·m2/g,具有良好的磁性.Fe_3O_4纳米粒子呈球型结构,分散性良好.与基底相比,复合微球的粒径尺寸明显增大,但依然符合载体材料的理想尺寸且分布均匀.此外,载体具有多孔结构,表面积较大,载药效率和载药量分别高达96.4%和144.6 mg/g.在pH为7.4和5.0的条件下对载药纳米粒子进行了药物释放研究.24 h内,粒子在2种pH下累计释放量分别为39.8%和78.6%.通过药物缓释验证了载体的pH响应性能.在实验中引入了对癌细胞具有杀伤作用的植酸,使合成的载体具有一定的抗癌作用.同时采用四甲基偶氮唑盐(MTT)法对人骨肉瘤细胞(MG-63)进行了体外分析实验,证实材料与抗癌药物阿霉素(DOX)之间存在着一定的协同抗癌效果.  相似文献   

16.
多重响应性介孔二氧化硅纳米微球的制备及载药研究   总被引:2,自引:0,他引:2  
采用溶胶凝胶法制备了以油酸稳定的Fe3O4为核, 十六烷基三甲基溴化铵(CTAB)为模板剂的磁响应性的介孔二氧化硅纳米微球; 通过孔道内修饰羧基和巯基, 链转移反应修饰线性的聚(N-异丙基丙烯酰胺-co-N-羟甲基丙烯酰胺)共聚物得到多重响应性的介孔二氧化硅纳米微球P(NIPAM-co-NHMA)@M-MSN(-COOH). 利用Brunauer-Emmett-Teller (BET)、振动样品磁强计(VSM)、透射电子显微镜(TEM)、紫外光谱(UV/Vis)表征了微球的物理化学性质. 阿霉素(DOX)被用作模型药物研究了这种多重响应性的介孔二氧化硅纳米微球作为药物载体的载药及药物释放行为, 结果显示这种纳米微球载药率高达48%, 药物释放呈现对温度和pH的双重响应性, 可以实现对药物的控制释放.  相似文献   

17.
以自制阿司匹林为药物模型,壳聚糖(CS)为载体源,采用微乳液成核-离子交联法制备了阿司匹林/壳聚糖纳米缓释微球.分别用傅里叶变换红外(FTIR)光谱、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、动态激光光散射(DLLS)、X射线粉末衍射(XRD)等表征了纳米微粒的化学组成、外观形貌、平均粒径和粒径分布、微球中壳聚糖的晶体结构以及阿司匹林的分布形态.结果表明,利用微乳液成核-离子交联法制备的阿司匹林/壳聚糖微球平均粒径约为88nm且粒径分布均匀,成核后壳聚糖结晶形态基本未变,阿司匹林以分子形态分布于微粒中,分子间未形成堆砌,为无定形态.采用UV-Vis分光光度计考察了微球的药物包封率、载药量,并对微球在生理盐水和葡萄糖溶液中的释药行为进行跟踪.结果表明,微球的载药量可达55%,药物包封率可达42%,实验条件下具有较好的药物缓释作用.  相似文献   

18.
聚羟基丁酯酯缓释微球的制备及性能   总被引:6,自引:1,他引:6  
用溶剂蒸发法制备了以新型生物可降解材料聚羟基丁酸酯为载体、以安定为模药的缓释微球,讨论了药物与载体之比对药物含量与包封率的影响,以及制备微球条件对药物释放性能的影响;微球平均粒径为30~40μm,粒径分布在1~1.5之间,最大载药量为19.51%;最高包封率为67.11%;体外累积释放曲线呈“两相”释放特征并拌随初始的“突释效应”。扫描电镜观察微球表面呈皱缩表观形态结构,微球内部横断面具有孔道与孔  相似文献   

19.
季帆  曾恺  张坤  李杰  张剑锋 《高分子学报》2016,(12):1704-1709
采用共沉淀法制备了用柠檬酸包覆的Fe3O4磁性纳米粒子,为提高其生物环境适应性和生物应用,利用聚乙二醇二胺(NH2-PEG-NH2)通过碳二亚胺化学法进一步修饰,得到具有良好性能的磁性纳米粒子修饰剂,并分别用场发射扫描电子显微镜(SEM)、洛伦兹透射电子显微镜(TEM)、马尔文激光粒度仪、X-射线粉末衍射仪(XRD)、傅里叶变换红外光谱(FTIR)、综合热分析仪(TG/DTA)、振动样品磁强计(VSM)对磁性纳米粒子的表面形态、化学结构、晶体结构、热稳定性和磁性能进行了表征.在此基础上用合成的磁性纳米粒子修饰剂对盐酸阿霉素(DOX·HCl)进行了修饰,研究了修饰剂的载药和释药行为.结果表明,所制备的修饰剂近乎球形,尺寸相对均匀,粒径在15 nm左右,饱和磁化强度为68 A·m2/kg,在磁靶向药物运输中可以达到良好的磁响应性能.在水中的载药量达到83%,在p H=7.4和p H=5.0下,磁性纳米粒子载药盐酸阿霉素释放均是一个缓慢的过程,具有明显的缓释效果,此外,由于不同p H值下,DOX中的氨基质子化程度存在差异,在较低的p H值下质子化的氨基互相排斥,这更有利于DOX的释放,累计释药率在72 h后分别为65.8%(p H=7.4)与73.6%(p H=5.0).研究表明该磁性纳米粒子具有很好的载药能力及缓释效果.  相似文献   

20.
一种新型季胺盐壳聚糖纳米载药体系的制备与性能   总被引:1,自引:0,他引:1  
在制备壳聚糖衍生物N,N,N-三甲基壳聚糖盐酸盐(TMC)的基础上,通过将两种性质相反的电解质溶液进行共混,制备了一种新型的 TMC/CMC(羧甲基壳聚糖)纳米载药颗粒体系.用激光散射仪和透射电镜表征了空白颗粒和载药颗粒的粒径、粒径分布、Zeta 电位和形态结构.栽药体系纳米颗粒的粒径在 200~600 nm 范围,表面可带正或负电荷,且 Zeta 电位具有可调性.研究表明:牛血清蛋白(BSA)的包封率与起始的 TMC、BSA 浓度相关;纳米载药颗粒对 BSA 的释放表现为,先爆释而后缓释并可保持 40 h 以上的释放.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号