首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
Eighteen possible isomers of C78(CH2)2 weTe investigated by the INDO method. It was indicated that the most stable isomer was 42,43,62,63-C78(CH2)2, where the -CH2 groups were added to the 6/6 bonds located at the same hexagon passed by the longest axis of C78 (C2v), to form cyclopropane structures. Based on the most stable four geometries of C78(CH2)2 optimized at B3LYP/3-21G level, the first absorptions in the electronic spectra calculated with the INDO/CIS method and the IR frequencies of the C-C bonds on the carbon cage computed using the AM1 method were blue-shifted compared with those of C78 (C2v) because of the bigger LUMO-HOMO energy gap and the less conjugated carbon cage after the addition. The chemical shifts of ^13C NMR for the carbon atoms on the added bonds calculated at B3LYP/3-21G level were moved upfield thanks to the conversion from sp^2-C to sp^3-C.  相似文献   

2.
Systematic studies on eight isomers of C70O were performed by means of INDO methods It has been indicated that the O atom is mainly added to the C1-C2 or C3-C3 bond and an epoxide feature with C1 symmetry is formed.Based on the optimized geometries,the UV-Vis spectra were calculated.It has been found that the main peaks of C70O resemble those of C70 and the characteristic absorptions beyond 460 nm are produced,which is m agree ment with the experimental results.Theoretical assignments about the absorptions were carried out and the reason for the red-shift of the absorptions was discussed.C70O is probably composed of four isomers according to the calculated results.  相似文献   

3.
DFT Studies on Non-IPR C_(68) and Endohedral Fullerene Sc_3N@C_(68)   总被引:3,自引:0,他引:3  
The structures and spectra of 20 possible isomers of C78(CH2)3 have been studied by using AM1,INDO/CIS and DFT methods. The results show that the most stable isomer is 1,2,3,4,5,6-C78(CH2)3 (A) with annulene structures,where three -CH2 groups are added to the 6/6 bonds located at the same hexagon passed by the shortest axis of C78 (C2v). Compared with that of C78 (C2v),the first absorption in the electronic spectrum of C78(CH2)3 (A) is blue-shifted because of its wider LUMO-HOMO energy gap. While the IR frequencies of the C–C bonds on the carbon cage are red-shifted owing to the formation of annulene structures and the extension of the conjugated system. The chemical shifts of the carbon atoms in 13C NMR spectra are moved upfield upon the addition.  相似文献   

4.
Studies on the Electronic Structures and Spectra of C78(CH2)3   总被引:1,自引:0,他引:1  
The structures and spectra of 20 possible isomers of C78(CH2)3 have been studied by using AM1,INDO/CIS and DFT methods. The results show that the most stable isomer is 1,2,3,4,5,6-C78(CH2)3 (A) with annulene structures,where three -CH2 groups are added to the 6/6 bonds located at the same hexagon passed by the shortest axis of C78 (C2v). Compared with that of C78 (C2v),the first absorption in the electronic spectrum of C78(CH2)3 (A) is blue-shifted because of its wider LUMO-HOMO energy gap. While the IR frequencies of the C–C bonds on the carbon cage are red-shifted owing to the formation of annulene structures and the extension of the conjugated system. The chemical shifts of the carbon atoms in 13C NMR spectra are moved upfield upon the addition.  相似文献   

5.
Theoretical studies on a series of oligobenzothiophenes were carded out with the AM 1 and DFT methods. Based on B3LYP/6-31G(D) optimized geometries, the electronic spectra, IR spectra and NMR spectra of the oligomers were calculated by INDO/CIS, AM1 and B3LYP/6-31G(D) methods, respectively. The energy gaps decrease, and the absorption in elec- tronic spectra exhibits a red-shift as polymerization increases. The IR frequencies are little affected by the polymerization and substituents. The ^13C chemical shifts are changed to be upfield since the electron-donating groups increase the electron density of carbon atoms but remain unchanged with the increase of polymerization.  相似文献   

6.
唐春梅  邓开明  杨金龙  汪信 《中国化学》2006,24(9):1133-1136
The generalized gradient approximation (GGA) based on density functional theory (DFT) was used to analyze the structural and electronic properties of Fe@C60 and C59Fe for comparison. Among the six possible optimized geometries of Fe@C60, the most favorable endohedral site of Fe atom is under the center of a hexagon ring, i.e., Fe@C60-6. The Energy gap (Eg) of Fe@C60-6 is smaller than those of C59Fe and C60, indicating the higher chemical reactivity. The magnetic moment of Fe atom in Fe@C60-6 is preserved to some extent though there is the hybridization between the ge atom and C atoms of the cage, in contrast to the completely quenched magnetic moment of the Fe atom in C59Fe.  相似文献   

7.
侯万国  REN Carolyn 《中国化学》2006,24(10):1336-1341
The intrinsic surface reaction constants, pKa1^int, pKa2^int, p^*KC^int and p^*KA^int , were evaluated by a modifieddouble extrapolation (MDE) for TiO2 without structural charge and Mg-Fe hydrotalcite-like compounds (HTlc) with structural charge, respectively. The results of intrinsic surface reaction constants for TiO2 were compared with those obtained by class double extrapolation (CDE) in literature. Furthermore, the values of intrinsic surface reaction constants obtained by MDE were used to simulate the charging behaviors of the materials. The following conclusions were obtained. For TiO2 without structural charge, the pKa1^int and pKa2^int evaluated by MDE are equal to those by CDE, however the p^*KC^int and p^*KA^int evaluated by MDE are much different from those by CDE. In principle, the results of the p^*KC^int and p^*KA^int evaluated by MDE are more accurate than those by CDE. The values of intrinsic surface reaction constants obtained by MDE can excellently simulate the charging curves for TiO2 with the triple layer model (TLM). For HTlc with positive structural charge, the results of ^*KC^int=0 and ^*KA^int →∞ were obtained by MDE, which means the inert electrolyte chemical binding does not exist; the point of zero net charge (PZNC) of c-independence also exist as the same as solid without structural charge, and the PHPZNC obtained by the acid-base titration can excellently be simulated and the surface charging tendency can be simulated to a great extent using the pKa1^int and pKa2^int evaluated by MDE and the diffuse layer model (DLM).  相似文献   

8.
方志刚  胡红智 《无机化学学报》2006,22(12):2222-2228
With the level of B3LYP/Lanl2dz of density functional theory and advisable adsorption models designed, the adsorption properties of the most stable cluster of Ni2Fe2P were calculated, and four stable configurations with the adsorption of hydrogen were gained. The geometries and HOMO contributions of 3d orbital of metal atoms and energy level properties of adsorption configurations were concerned and their Infrared Spectrum were simulated and predicted. The bond lengths and bond orders and vibration frequencies concerned synthetically, the adsorption mechanisms of hydrogen molecular on amorphous alloys Ni40Fe40P20 surfaces were discussed in the microcosmic aspect. The hydrogen molecules adsorbing on the clusters were dissociated. In the clusters′ Infrared Spectrums of hydrogen adsorption, there were the vibration peaks with the frequency less than 500 cm-1 caused by metal atoms and other vibration peaks with the frequency more than 500 cm-1 caused by hydrogen atoms. Compared with the energy level DOS of the clusters before and after adsorption, it was found, that the new adsorption activity sites generated after the adsorption of hydrogen, as well as easy way for metal atoms providing electrons and participating subsequence reactions were gained.  相似文献   

9.
MENG Zeda  OH Wonchun 《催化学报》2012,(9):1495-1501
CoS2,CoS 2-C60 /TiO2,CoS2-CNT/TiO2,and CoS2-Graphene/TiO2 were prepared.The TiO2 products had the anatase phase structure and interesting surface compositions.X-ray diffraction patterns of the CoS2-carbon/TiO2 composites showed a single and clear anatase phase and the CoS2 structure.Scanning electron microscopy characterization of the texture on the CoS 2-carbon/TiO2 composites showed a homogenous composition.Energy-dispersive X-ray spectra for elemental identification showed the presence of C and Ti with strong Co and S peaks from the CoS2-carbon/TiO2 composites.The composites obtained were also characterized by transmission electron microscopy and UV-Vis spectroscopy.CoS2-carbon/TiO2 composites showed excellent photocatalytic activity for the degradation of methylene blue under visible light irradiation.This was attributed to both photocatalysis on the TiO2 support and charge transfer by the carbon nanomaterial,and the introduction of CoS2 to enhance transfer of photogenerated electrons.  相似文献   

10.
The equilibrium geometries, vibrational frequencies, atomization energies, adiabatic electron separations, adiabatic detachment energies (ADE), and adiabatic ionization potentials of the low-lying electronic states for the NaAs4 clusters and its ions were investigated employing the DFT method, and then compared with the photoelectron spectra. According to the computed results, reasonable assignments for the photoelectron spectra of NaAs4^- were suggested.  相似文献   

11.
Equilibrium geometries and relative stabilities of 24 possible isomers for C78O4 based on C78 (C2v) were studied by intermediate neglect of differential overlap (INDO) calculations. It was indicated that the most stable geometry is 28,29,30,31,52,53,73,78‐C78O4, where three oxygen atoms are added to the same hexagon, through which the longest axis of C78 (C2v) goes, and the forth oxygen atom is added to the C(73)? C(78) bond intersected by the shortest axis of C78 (C2v), and epoxide structures are formed. Electronic spectra of C78O4 isomers were investigated based on the optimized geometries. The blue shift of the first absorption for 28,29,30,31,52,53,73,78‐C78O4 compared with that of C78 (C2v) was rationalized and nature of transition for the peaks discussed. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

12.
The equilibrium structures and relative stabilities of the possible 21 lower‐energy isomers for C78O3 based on C78 (C2v) were studied by intermediate neglect of differential overlap (INDO) calculations. It was indicated that the most stable geometry is 28,29,30,31,52,53‐C78O3, where three oxygen atoms are added to the same hexagon passed by the longest axis of C78 (C2v) and epoxide structures are formed. Electronic spectra of C78O3 isomers were investigated based on the optimized geometries. The blue shift of the absorptions for 28,29,30,31,52,53‐C78O3 compared with that of C78 (C2v) was rationalized and nature of transition of the peaks discussed. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

13.
Encapsulating one to three metal atoms or a metallic cluster inside fullerene cages affords endohedral metallofullerenes (EMFs) classified as mono‐, di‐, tri‐, and cluster‐EMFs, respectively. Although the coexistence of various EMF species in soot is common for rare‐earth metals, we herein report that europium tends to prefer the formation of mono‐EMFs. Mass spectroscopy reveals that mono‐EMFs (Eu@C2n) prevail in the Eu‐containing soot. Theoretical calculations demonstrate that the encapsulation energy of the endohedral metal accounts for the selective formation of mono‐EMFs and rationalize similar observations for EMFs containing other metals like Ca, Sr, Ba, or Yb. Consistently, all isolated Eu‐EMFs are mono‐EMFs, including Eu@D3h(1)‐C74, Eu@C2v(19138)‐C76, Eu@C2v(3)‐C78, Eu@C2v(3)‐C80, and Eu@D3d(19)‐C84, which are identified by crystallography. Remarkably, Eu@C2v(19138)‐C76 represents the first Eu‐containing EMF with a cage that violates the isolated‐pentagon‐rule, and Eu@C2v(3)‐C78 is the first C78‐based EMF stabilized by merely one metal atom.  相似文献   

14.
Stimulated by the recent experimental success in production and characterization of YCN@Cs(6)‐C82, the possibility of encapsulating YCN cluster in the C78 fullerene has been performed using density functional theory. Six isomers of YCN@C78 are considered based on six lowest energy C782? isomers. The results reveal that YCN@D3h(24109)‐C78 and YCN@C2v(24107)‐C78, both of which satisfy the isolated‐pentagon rule, present excellent thermodynamic stability with very small energy differences. Moreover, the large HOMO‐LUMO gaps (1.55 and 1.47 eV for YCN@D3h(24109)‐C78 and YCN@C2v(24107)‐C78, respectively) indicate their high kinetic stabilities. Significantly, in both the structures, the encapsulated YCN cluster is triangular, similar to the cases of YCN@Cs(6)‐C82 and TbCN@C2(5)‐C82. In addition, electronic absorption spectra, infrared spectra, and 13C nuclear magnetic resonance spectra of two stable structures have also been explored to further disclose the molecular structures and properties. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
The geometries, stabilities, and electronic properties of new endohedral fullerene YCN@C72 have been investigated by the B3LYP and PBE1PBE density functional (DFT) methods. The C2v(11188)‐C72 cage, which violates the isolated pentagon rule (IPR) with a pair of fused pentagons, is predicted to be the lowest energy isomer for both empty and YCN@C72. The relatively large HOMO‐LUMO gap (B3LYP: 1.48 eV, PBE1PBE: 1.68 eV) for YCN@C2v(11188)‐C72 reveals this structure kinetic stability. Significantly, the encased YCN cluster adopts a triangular structure inside the C2v(11188)‐C72 cage, similar to the results reported on YCN@Cs(6)‐C82 and TbCN@C2(5)‐C82. Furthermore, the vertical ionization potential and electron affinity, UV‐vis‐NIR and IR spectra of YCN@C2v(11188)‐C72 have been predicted to facilitate future experimental characterization. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
The relative stabilities of the 17 possible isomers for C80O2 based on C80 (D5d) were studied using Becke three parameters plus Lee, Yang, and Parr's (B3LYP) method and 6‐31G (d) basis set in density functional theory. The most stable geometry of C80O2 was predicted to be 23,24,27,28‐C80O2 (A) with annulene‐like structures, where the additive bonds are those between two hexagons (6/6 bonds) near the equatorial belt of C80 (D5d). Electronic spectra of C80O2 isomers were calculated based on the optimized geometries using intermediate neglect of differential overlap (INDO) calculation. Compared with those of C80 (D5d), the first absorptions in the electronic spectra of C80O2 are blue‐shifted owing to the wide energy gaps. 13C nuclear magnetic resonance spectra and nucleus independent chemical shifts of the C80O2 isomers were computed at B3LYP/6‐31G level. The chemical shifts of the bridged carbon atoms in the epoxy structures of C80O2 compared with those of the bridged carbon atoms in the annulene‐like structures are changed upfield. Generally, the isomers with the annulene‐like structures of C80O2 are more aromatic than those with the epoxy structures. The addition of the oxygen atoms near the pole of C80 (D5d) is favorable to improving the aromaticities of C80O2. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

17.
Twenty-tow possible isomers for C76BN were studied by INDO methods. The two most stable geometries are 52,53-C76BN and 29,28-C76BN, in which boron and nitrogen atoms are connected with each other and located at the 6/6 bond near the longest axis of C78(C2v). Electronic spectra of C76BN were investigated with INDO/SCI method. UV absorptions of C76BN are red-shifted compared with those of C78(C2v). The structures and IR spectra for the four stable isomers of C76BN were calculated by AM1 method. It was indicated that the substitution of the BN unit weakens the conjugation of carbon atoms, leading to the decrease of IR frequencies.  相似文献   

18.
In the title compound, [La2(C8H4O4)2(C6H4NO2)2]n, there are two crystallographically independent La centres, both nine‐coordinated in tricapped trigonal prismatic coordination geometries by eight carboxylate O atoms and one pyridyl N atom. The La centres are linked by the carboxylate groups of isonicotinate (IN) and benzene‐1,2‐dicarboxylate (BDC2−) ligands to form La–carboxylate chains, which are further expanded into a three‐dimensional framework with nanometre‐sized channels by La—N bonds. In the construction of the resultant architecture, in tricapped trigonal prismatic coordination geometries by eight carboxylate O atoms and one pyridyl N atom, while the BDC ligands link to four different cations each, displaying penta‐ and heptadentate chelating–bridging modes, respectively.  相似文献   

19.
Encapsulating one to three metal atoms or a metallic cluster inside fullerene cages affords endohedral metallofullerenes (EMFs) classified as mono-, di-, tri-, and cluster-EMFs, respectively. Although the coexistence of various EMF species in soot is common for rare-earth metals, we herein report that europium tends to prefer the formation of mono-EMFs. Mass spectroscopy reveals that mono-EMFs (Eu@C2n) prevail in the Eu-containing soot. Theoretical calculations demonstrate that the encapsulation energy of the endohedral metal accounts for the selective formation of mono-EMFs and rationalize similar observations for EMFs containing other metals like Ca, Sr, Ba, or Yb. Consistently, all isolated Eu-EMFs are mono-EMFs, including Eu@D3h(1)-C74, Eu@C2v(19138)-C76, Eu@C2v(3)-C78, Eu@C2v(3)-C80, and Eu@D3d(19)-C84, which are identified by crystallography. Remarkably, Eu@C2v(19138)-C76 represents the first Eu-containing EMF with a cage that violates the isolated-pentagon-rule, and Eu@C2v(3)-C78 is the first C78-based EMF stabilized by merely one metal atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号