首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preferential Formation of Mono‐Metallofullerenes Governed by the Encapsulation Energy of the Metal Elements: A Case Study on Eu@C2n (2n=74–84) Revealing a General Rule
Authors:Lipiao Bao  Ying Li  Pengyuan Yu  Wangqiang Shen  Peng Jin  Xing Lu
Abstract:Encapsulating one to three metal atoms or a metallic cluster inside fullerene cages affords endohedral metallofullerenes (EMFs) classified as mono‐, di‐, tri‐, and cluster‐EMFs, respectively. Although the coexistence of various EMF species in soot is common for rare‐earth metals, we herein report that europium tends to prefer the formation of mono‐EMFs. Mass spectroscopy reveals that mono‐EMFs (Eu@C2n) prevail in the Eu‐containing soot. Theoretical calculations demonstrate that the encapsulation energy of the endohedral metal accounts for the selective formation of mono‐EMFs and rationalize similar observations for EMFs containing other metals like Ca, Sr, Ba, or Yb. Consistently, all isolated Eu‐EMFs are mono‐EMFs, including Eu@D3h(1)‐C74, Eu@C2v(19138)‐C76, Eu@C2v(3)‐C78, Eu@C2v(3)‐C80, and Eu@D3d(19)‐C84, which are identified by crystallography. Remarkably, Eu@C2v(19138)‐C76 represents the first Eu‐containing EMF with a cage that violates the isolated‐pentagon‐rule, and Eu@C2v(3)‐C78 is the first C78‐based EMF stabilized by merely one metal atom.
Keywords:crystallography  encapsulation energy  europium  metallofullerenes  preferential formation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号