首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
基于表面增强拉曼光谱的重金属离子检测   总被引:1,自引:0,他引:1  
以对巯基苯甲酸为拉曼标记和自组装修饰分子, 在光亮金基底上修饰后作为检测基底, 在金纳米粒子表面修饰后获得具有表面增强拉曼光谱信号的标记金溶胶. 修饰的基底及纳米离子通过重金属离子与羧基端的配位而发生相互作用, 最终形成“金属基底-对巯基苯甲酸/重金属离子/对巯基苯甲酸-金属纳米颗粒”的三明治结构. 采用扫描电镜表征纳米粒子的组装及以表面增强拉曼光谱检测表面标记分子的信号, 以此实现重金属离子的检测. 以强螯合剂EDTA溶液淋洗三明治结构, 使重金属离子与金属基底以及纳米颗粒上的羧基的配位作用断裂, 获得可再次利用的修饰金基底.  相似文献   

2.
A simple and convenient one step room temperature method is described for the synthesis of bovine serum albumin (BSA) capped gold and silver nanoparticles. BSA reduces silver ions to silver nanoparticles but does not directly reduce gold ions to gold nanoparticles at room temperature and varying pH conditions. However, when silver and gold ions are simultaneously added to BSA, silver ions get reduced to metallic silver first and these in turn reduce gold ions to gold nanoparticles through a galvanic exchange reaction. The so synthesized silver and gold nanoparticles are easily water dispersible and can withstand addition of salt even at high concentrations. It is shown that the capped protein retains its secondary structure and the helicity to a large extent on the nanoparticles surface and that the protein capping makes the nanoparticles cytocompatible.  相似文献   

3.
重金属离子对生态环境以及人类健康造成了严重的危害,因此处理水体中的重金属离子迫在眉睫。采用共沉淀法,以乙基纤维素为模版,将四氧化三铁(Fe3O4)纳米颗粒与乙基纤维素复合,制备了乙基纤维素磁性复合材料(EC/Fe3O4)。探究了吸附添加量、溶液pH值和吸附时间等因素对溶液中Cu(Ⅱ)吸附过程的影响。结果表明,EC/Fe3O4表现出良好的吸附速率和吸附性能。吸附4 min,可达到吸附平衡状态。在Cu(Ⅱ)浓度为20 mg/L,pH=7,吸附时间为160 min条件下,EC/Fe3O4的单位吸附量qe为76.98 mg/g,最大去除率为94.68%。在经过8次吸附循环后,单位吸附量为62.21 mg/g。  相似文献   

4.
Fe3O4 magnetic nanoparticles were synthesized by co-precipitation method. The structural characterization showed an average nanoparticle size of 8 nm. The synthesized Fe3O4 nanoparticles were tested for the treatment of synthetic aqueous solutions contaminated by metal ions, i.e. Pb(II), Cu(II), Zn(II) and Mn(II). Experimental results show that the adsorption capacity of Fe3O4 nanoparticles is maximum for Pb(II) and minimum for Mn(II), likely due to a different electrostatic attraction between heavy metal cations and negatively charged adsorption sites, mainly related to the hydrated ionic radii of the investigated heavy metals. Various factors influencing the adsorption of metal ions, e.g., pH, temperature, and contacting time were investigated to optimize the operating condition for the use of Fe3O4 nanoparticles as adsorbent. The experimental results indicated that the adsorption is strongly influenced by pH and temperature, the effect depending on the different metal ion considered.  相似文献   

5.
Pure water which is free of toxic chemicals is necessary for human health. So, detection and control of heavy metal ions in water is very important. Keeping this in mind, selective and sensitive optical sensor based on surface plasmon resonance for detection of various heavy metals in water using gold nanoparticles was explained in this present study. These AuNPs were prepared using Hibiscus cannabinus leaf extract as reducing agent with the average particle size of 22 nm. These gold nanoparticles are considerably selective and sensitive towards Fe3+ and it was used to detect the concentration of Fe3+ ions in water in the range 29.82–173.74 μM by tracking the absorbance changes of SPR band and the sensitivity of the system towards the Fe3+ concentration and it was found to be 0.0037 μM?1. We hope that these gold nanoparticles can be used for detecting Fe3+ ions concentration, in the water purification processes.  相似文献   

6.
Chen X  Cheng X  Gooding JJ 《The Analyst》2012,137(10):2338-2343
Silver nanoparticles capped with mercaptoacetic acid and 2-aminoethanethiol short-chain alkanethiols were prepared by a one-step method in aqueous solution for monitoring pH and a range of heavy metal ions. The mode of transduction is optical, based on the change in aggregation of the nanoparticles in solution. Because of the different ionic interactions between the modified nanoparticles, these nanoparticle sensors can rapidly detect Pb(2+), Cu(2+) and Fe(2+), with detection limits as low as 1 × 10(-5) M, 5 × 10(-7) M and 5 × 10(-5) M respectively, as well as having the ability to detect Cu(2+) ions from Pb(2+) and Fe(2+). Furthermore, the same functionalised nanoparticles are also sensitive to pH; exhibiting a good linear dynamic response between pH 1 and 10.  相似文献   

7.
Gold nanoparticles with an average diameter of approximately 20 nm were prepared in an aqueous solution by a wet chemistry method. The parent gold nanoparticles were then capped with a 4-aminothiophenol protecting layer and transferred into toluene by tuning the surface charge of the modified nanoparticles. Gold nanoparticles before and after phase transfer were subjected to photofragmentation by a pulsed 532 nm laser. The effects of solvent properties and surface chemistry on the photofragmentation of the gold nanoparticles have been investigated. Fast photofragmentation has been observed in the organic solvent in which the dielectric constant, heat capacity, and thermal conductivity are lower. The results suggest new approaches for the preparation of very small gold clusters from gold nanoparticles.  相似文献   

8.
Keggin ion-mediated synthesis of Au core-Ag shell bimetallic nanoparticles is described. Exposure of photochemically reduced aqueous (PW12O40)3- Keggin ions to AuCl4- ions leads to the formation of stable gold nanoparticles capped by the Keggin ions. The surface-bound Keggin ions may then be activated by UV irradiation and, upon exposure to Ag+ ions, reduce the metal ions to form a silver shell around the gold core. That the capping agent not only stabilizes the metal nanoparticles but also plays the role of a switchable reducing agent is a highlight of this approach with important implications in nanomaterials synthesis and catalysis.  相似文献   

9.
Aggregation of gold nanoparticles of increasing size has been studied as a consequence of adsorption of 2-aminothiophenol (ATP) on gold nanoparticle surfaces. The capping property of ATP in the acidic pH range has been accounted from UV-vis absorption spectroscopy and surface-enhanced Raman scattering (SERS) studies. The effect of nanoparticle size (8-55 nm) on the nature of aggregation as well as the variation in the optical response due to variable degree of interparticle coupling effects among the gold particles have been critically examined. Various techniques such as transmission electron microscopy, X-ray diffraction, zeta-potential, and average particle size measurement were undertaken to characterize the nanoparticle aggregates. The aggregate size, interparticle distances, and absorption band wavelengths were found to be highly dependent on the pH of the medium and the concentration of the capping agent, ATP. The acquired SERS spectra of ATP relate the interparticle spacing. It has been observed that the SERS signal intensities are different for different sized gold nanoparticles.  相似文献   

10.
This paper focuses on using electrochemical-pH-switchable polymer films as active surfaces for heavy metal waste treatment. Polyacrylic acid (PAA) was grafted at open air and room temperature on gold substrates. As a broad-range chelating material, PAA can capture heavy metal ions at low concentration. The release of the metal ions from the grafted-PAA film was obtained under electro-induced-acidification by applying an anodic potential at the electrode to promote a localized water electrolysis. Such electrochemical-switchable films can be part of a secondary step-treatment after conventional ion exchange process or precipitation for treatment of aqueous effluents in order to reach very low concentration in heavy metal ions without production of secondary effluents.  相似文献   

11.
Wu SP  Chen YP  Sung YM 《The Analyst》2011,136(9):1887-1891
A sensitive, selective colorimetric Fe(3+) detection method has been developed by using pyrophosphate functionalized gold nanoparticles (P(2)O(7)(4-)-AuNPs). Gold nanoparticles were prepared by reducing HAuCl(4) with sodium borohydride, in the presence of Na(4)P(2)O(7). IR spectra suggested that pyrophosphates were capped on the surface of the gold nanoparticles. Aggregation of P(2)O(7)(4-)-AuNPs was induced immediately in the presence of Fe(3+) ions, yielding a color change from pink to violet. This Fe(3+)-induced aggregation of P(2)O(7)(4-)-AuNPs was monitored using first the naked eye and then UV-vis spectroscopy with a detection limit of 5.6 μM. The P(2)O(7)(4-)-AuNPs bound by Fe(3+) showed excellent selectivity compared to other metal ions (Ca(2+), Cd(2+), Co(2+), Fe(2+), Hg(2+), K(+), Mg(2+), Mn(2+), Na(+), Ni(2+), Pb(2+), and Zn(2+)). The best detection of Fe(3+) was achieved in a pH range from 3 to 9. In addition, the P(2)O(7)(4-)-AuNPs were also used to detect Fe(3+) in lake water samples, with low interference.  相似文献   

12.
This communication demonstrates superparamagnetic nanosized particles with a magnetic core and a porous carbon shell (thickness of 11 nm), which can remove 97% of Pb(2+) ions from an acidic aqueous solution at a Pb(2+) ion concentration of 100 mg L(-1). It is suggested that a weak electrostatic force of attraction between the heavy metal ions and the nanoparticles and the heavy metal ions adsorption on the mesopore carbon shell contribute most to the superior removal property.  相似文献   

13.
In this work, we study the elimination of three bivalent metal ions (Cd2+, Cu2+, and Pb2+) by adsorption onto natural illitic clay (AM) collected from Marrakech region in Morocco. The characterization of the adsorbent was carried out by X-ray fluorescence, Fourier transform infrared spectroscopy and X-ray diffraction. The influence of physicochemical parameters on the clay adsorption capacity for ions Cd2+, Cu2+, and Pb2+, namely the adsorbent dose, the contact time, the initial pH imposed on the aqueous solution, the initial concentration of the metal solution and the temperature, was studied. The adsorption process is evaluated by different kinetic models such as the pseudo-first-order, pseudo-second-order, and Elovich. The adsorption mechanism was determined by the use of adsorption isotherms such as Langmuir, Freundlich, and Temkin models. Experiments have shown that heavy metals adsorption kinetics onto clay follows the same order, the pseudo-second order. The isotherms of adsorption of metal cations by AM clay are satisfactorily described by the Langmuir model and the maximum adsorption capacities obtained from the natural clay, using the Langmuir isotherm model equation, are 5.25, 13.41, and 15.90 mg/g, respectively for Cd(II), Cu(II), and Pb(II) ions. Adsorption of heavy metals on clay is a spontaneous and endothermic process characterized by a disorder of the medium. The values of ΔH are greater than 40 kJ/mol, which means that the interactions between clay and heavy metals are chemical in nature.  相似文献   

14.
Novel magnetic Fe3O4@C@MgAl-layered double-hydroxide (LDH) nanoparticles have been successfully prepared by the chemical self-assembly methods. The properties of surface functional groups, crystal structure, magnetism and surface morphology of magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravity-differential thermal gravity (TG-DTG), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The adsorption studies of the novel adsorbent in removing heavy metals Cr (VI) from waste water showed that the maximum absorption amount of Cr(VI) was 152.0 mg/g at 40℃ and pH 6.0. The excellent adsorption capacity of the Fe3O4@C@MgAl-LDH nano-absorbents plus their easy separation, environmentally friendly composition and reusability makes them more suitable adsorbents for the removal of metal ions from waste water.  相似文献   

15.
The leached residue, generated after selective extraction of Cu, Ni, and Co in sulfur dioxide-ammonia leaching of manganese nodules, was characterized and batch isothermal adsorption experiments were conducted at ambient temperature to evaluate the effectiveness of the water-washed leached residue for removal of different bivalent metal ions from aqueous synthetic solutions. The effects of pH, initial metal ion concentrations, amount of adsorbent, interfering ions, and heat treatment were also investigated. The uptake of metal ions increased with increasing pH. Under identical conditions the adsorption capacity increased in the order Cd(2+)相似文献   

16.
Spontaneous formation and efficient stabilization of gold nanoparticles with an average diameter of 7 approximately 20 nm from hydrogen tetrachloroaureate(III) hydrate (HAuCl4.3H2O) were achieved in air-saturated aqueous poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer solutions at ambient temperature in the absence of any other reducing agent. The particle formation mechanism is considered here on the basis of the block copolymer concentration dependence of absorption spectra, the time dependence (kinetics) of AuCl4- reduction, and the block copolymer concentration dependence of particle size. The effects of block copolymer characteristics such as molecular weight (MW), PEO block length, PPO block length, and critical micelle concentration (cmc) are explored by examining several PEO-PPO-PEO block copolymers. Our observations suggest that the formation of gold nanoparticles from AuCl4- comprises three main steps: (1) reduction of metal ions by block copolymer in solution, (2) absorption of block copolymer on gold clusters and reduction of metal ions on the surface of these gold clusters, and (3) growth of metal particles stabilized by block copolymers. While both PEO and PPO blocks contribute to the AuCl4- reduction (step 1), the PEO contribution appears to be dominant. In step 2, the adsorption of block copolymers on the surface of gold clusters takes place because of the amphiphilic character of the block copolymer (hydrophobicity of PPO). The much higher efficiency of particle formation attained in the PEO-PPO-PEO block copolymer systems as compared to PEO homopolymer systems can be attributed to the adsorption and growth processes (steps 2 and 3) facilitated by the block copolymers. The size of the gold nanoparticles produced is dictated by the above mechanism; the size increases with increasing reaction activity induced by the block copolymer overall molecular weight and is limited by adsorption due to the amphiphilic character of the block copolymers.  相似文献   

17.
Ceramic hollow microspheres (CHMSs) were prepared to use as supports for the removal of heavy metal ions from industrial waste-water. A water extraction sol–gel technique was used to prepare porous CHMS by extracting water from an emulsion of LUDOX (silica colloid; SiO2, Aldrich Co.) and 2-ethyl-1-hexanol. Experiments were conducted to control pore size, wall thickness, and separation yield by examining the ratio of precursors (LUDOX and 2-ethyl-1-hexanol), catalyst (NH4OH), sintering temperature, surfactant (SPAN 80), extractant (n-butanol), stirring speed, and concentration of precursor (LUDOX). The results revealed that the optimum conditions were 20 ml of a 10 wt% solution of LUDOX, 10 ml of NH4OH, a sintering temperature of 500°C, 0.4 ml of SPAN 80, 200 ml of n-butanol, and a stirring speed of 730 rpm/100 ml of 2-ethyl-1-hexanol. CHMSs were impregnated in Cyanex 272 and examined for their ability to remove heavy metal ions from a solution. Based on an experiment involving the removal of metal ions using CHMSs that were prepared under optimum conditions, Zn ion was removed at a level of 0.354 mmol/g at pH 4, which was about twice the adsorption capacity of CHMSs prepared by Wilcox (Mater. Res. Soc. Symp. Proc.346, 201 (1994)).  相似文献   

18.
We have developed a fast method for sensitive extraction and determination of the metal ions silver(I), gold(III), copper(II) and palladium(II). Fe3O4 magnetic nanoparticles were modified with polythiophene and used for extraction the metal ions without a chelating agent. Following extraction, the ions were determined by flow injection inductively coupled plasma optical emission spectrometry. The influence of sample pH, type and volume of eluent, amount of adsorbent, sample volume and time of adsorption and desorption were optimized. Under the optimum conditions, the calibration plots are linear in the 0.75 to 100 μg L?1 concentration range (R2?>?0.998), limits of detection in the range from 0.2 to 2.0 μg L?1, and enhancement factors in the range from 70 to 129. Precisions, expressed as relative standard deviations, are lower than 4.2 %. The applicability of the method was demonstrated by the successful analysis of tap water, mineral water, and river water.
Figure
In the present work, polythiophene-coated Fe3O4 nanoparticles have been successfully synthesized and were applied as adsorbent for magnetic solid-phase extraction of some precious metal ions.  相似文献   

19.
李秋华 《广州化学》2011,36(2):22-28
以甘蔗渣为原材料,于20%(wt)的NaOH溶液中碱化24 h,在碱性条件下加入用量为0.5 mL/g的CS2,在30℃反应2.5 h,合成了蔗渣纤维素黄原酸酯(BCX);并对其合成条件进行了优化,对其处理重金属离子的效果进行了评价.研究结果表明,BCX对重金属废水中的Ni2+、Cu2+、Zn2+、pb2+的去除率均在...  相似文献   

20.
Single-stranded DNA can be adsorbed by citrate capped gold nanoparticles (AuNPs), resulting in increased AuNP stability, which forms the basis of a number of biochemical and analytical applications, but the fundamental interaction of this adsorption reaction remains unclear. In this study, we measured DNA adsorption kinetics, capacity, and isotherms, demonstrating that the adsorption process is governed by electrostatic forces. The charge repulsion among DNA strands and between DNA and AuNPs can be reduced by adding salt, reducing pH or by using noncharged peptide nucleic acid (PNA). Langmuir adsorption isotherms are obtained, indicating the presence of both adsorption and desorption of DNA from AuNPs. While increasing salt concentration facilitates DNA adsorption, the desorption rate is also enhanced in higher salt due to DNA compaction. DNA adsorption capacity is determined by DNA oligomer length, DNA concentration, and salt. Previous studies indicated faster adsorption of short DNA oligomers by AuNPs, we find that once adsorbed, longer DNAs are much more effective in protecting AuNPs from aggregation. DNA adsorption is also facilitated by using low pH buffers and high alcohol concentrations. A model based on electrostatic repulsion on AuNPs is proposed to rationalize the DNA adsorption/desorption behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号