首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Facile synthesis of two 2-anthracene ammonium-based magnetic ionic liquids (MILs), 2-anthracene ammonium tetrachloroferrate (III) ([2A-A]FeCl4) and 2-anthracene ammonium trichlorocobaltate (II) ([2A-A]CoCl3) was performed by protonation of 2-aminoanthracene, followed complexation with FeCl3/CoCl2. The MILs were tested in the adsorptive removal of Cd2+, As3+, Pb2+ and Cr3+ from water sources. Upon treatment with 10 mg dosage of MILs in 10 mL aqueous solution of 50 ppm each of Cd2+, As3+, Pb2+ and Cr3+, adsorption capacity (mg/g) in the range of 5.73–55.5 and 23.6–56.8 for [2A-A]FeCl4 and [2A-A]CoCl3 respectively were recorded. Thus, the optimization, kinetic and isotherms studies were conducted using the [2A-A]CoCl3 adsorbent. The [2A-A]CoCl3 was more effective in pH 7–9, and equilibrium adsorption was achieved after 60 min contact time. The adsorption process proceeded via the Pseudo-second order pathway and the Langmuir isotherm model is the best fit for the adsorption process (with qmax = 227 – 357 mg/g) of all the targeted metal ions. The [2A-A]CoCl3 adsorbent demonstrated practicality with large distribution and selectivity coefficients of the targeted ions, and up to six times regeneration.  相似文献   

2.
《Solid State Sciences》2012,14(2):202-210
Waste materials from industries such as food processing may act as cost effective and efficient biosorbents to remove toxic contaminants from wastewater. This study aimed to establish an optimized condition and closed loop application of processed orange peel for metals removal. A comparative study of the adsorption capacity of the chemically modified orange peel was performed against environmentally problematic metal ions, namely, Cd2+, Cu2+ and Pb2+, from aqueous solutions. Chemically modified orange peel (MOP) showed a significantly higher metal uptake capacity compared to original orange peel (OP). Fourier Transform Infrared (FTIR) Spectra of peel showed that the carboxylic group peak shifted from 1637 to 1644 cm−1 after Pb (II) ions binding, indicated the involvement of carboxyl groups in Pb(II) ions binding. The metals uptake by MOP was rapid and the equilibrium time was 30 min at constant temperature and pH. Sorption kinetics followed a second-order model. The mechanism of metal sorption by MOP gave good fits for Freundlich and Langmuir models. Desorption of metals and regeneration of the biosorbent was attained simultaneously by acid elution. Even after four cycles of adsorption-elution, the adsorption capacity was regained completely and adsorption efficiency of metal was maintained at around 90%.  相似文献   

3.
Kapok fiber, a natural hollow fiber with thin shell and large cavity, has rarely been used as adsorbent for heavy metal ions. In this paper, kapok fibers were modified with diethylenetriamine pentaacetic acid (DTPA) after hydrophilicity treatment. The adsorption behavior of the resultant kapok-DTPA influenced by pH, adsorption time and initial concentration of metal ion was investigated. The results demonstrate that adsorption equilibrium was reached within 2 min for Pb2+ and Cd2+. Adsorption kinetics showed that the adsorption rate was well fitted by pseudo-second-order rate model. The adsorption isotherms were studied, and the best fit was obtained in the Langmuir model. The maximum adsorption capacities of kapok-DTPA were 310.6 mg g?1 for Pb2+, 163.7 mg g?1 for Cd2+, 101.0 mg g?1 for Cu2+, respectively. After eight desorption and re-adsorption loops, the lost adsorption capacities for Pb2+ and Cu2+ were less than 10 %. Because of the large specific area derived from the hollow fiber structure, kapok-DTPA exhibited much better adsorption capacity compared with many other reported adsorbents based on natural materials.  相似文献   

4.
Kaolinite clay obtained from Ubulu-Ukwu, Delta state in Nigeria was modified with polyvinyl alcohol (PVA) reagent to obtain PVA-modified Kaolinite clay adsorbent. Scanning Electron Microscopy (SEM) of the PVA-modified adsorbent suggests that Kaolinite clay particles were made more compact in nature with no definite structure. Modification of Kaolinite clay with PVA increased its adsorption capacity for 300 mg/L Pb2+ and Cd2+ by a factor of at least 6, i.e., from 4.5 mg/g to 36.23 mg/g and from 4.38 mg/g to 29.85 mg/g, respectively, at 298 K. Binary mixtures of Pb2+ and Cd2+ decreased the adsorption capacity of Unmodified Kaolinite clay for Pb2+ by 26.3% and for Cd2+ by 0.07%, respectively. In contrast, for PVA-modified Kaolinite clay, the reductions were up to 50.9% and 58.5% for Pb2+ and Cd2+, respectively. The adsorption data of Pb2+ and Cd2+ onto both Unmodified and PVA-modified Kaolinite clay adsorbents were found to fit the Pseudo-Second Order Kinetic model (PSOM), indicating that adsorption on both surfaces was mainly by chemisorption and is concentration dependent. However, kinetic adsorption data from both adsorbent generally failed the Pseudo-First order Kinetic model (PFOM) test. Extents of desorption of 91% Pb2+ and 94% Cd2+ were obtained, using 0.1 M HCl, for the Unmodified Kaolinite clay adsorbent. It was found that 99% Pb2+ and 97% Cd2+, were desorbed, for PVA-modified Kaolinite clay adsorbents within 3 min for 60 mg/L of the metal ions adsorbed by the adsorbents.  相似文献   

5.
The removal of heavy metals, such as Cu(II), Cd(II) and Cr(III) from aqueous solution was studied using Chorfa silt material (Mascara, Algeria). The main constituents of silt sediment are quartz, calcite and mixture of clays. The experimental data were described using Freundlich, Langmuir, Dubinin–Radushkevich (D–R) and Langmuir–Freundlich models. The adsorbed amounts of chromium and copper ions were very high (95% and 94% of the total concentration of the metal ions), whereas cadmium ion was adsorbed in smaller (55%) amounts. The Langmuir–Freundlich isotherm model was the best to describe the experimental data. The maximum sorption capacity was found to be 26.30, 11.76 and 0.35 mg/g for Cr3+, Cu2+ and Cd2+, respectively. The results of mean sorption energy, E (kJ/mol) calculated from D–R equation, confirmed that the adsorption of copper, chromium and cadmium on silt is physical in nature.  相似文献   

6.
Stable ultra‐thin Langmuir monolayers of calix[4]resorcinarene derivatives, namely: C‐dec‐9‐enylcalix[4]resorcinarene‐O‐(R+)‐α‐methylbenzylamine (Ionophore I ), and C‐dec‐9‐enylcalix[4]resorcinarene‐O‐(S‐)‐α‐methylbenzylamine (Ionophore II ), were prepared at the air‐water interface. Their interactions with a series of heavy metals (HM) ions (Cu2+, Pb2+, Hg2+ and Cd2+) present in the aqueous subphase were investigated by measuring surface pressure‐area isotherms, at different concentrations. The surface pressure‐area (Π‐A) isotherms were stable and demonstrated the HM amounts influence on the limiting area (Alim) values, therefore confirming the examined macrocycles capability to host the metallic toxicants. Additionally, a HM concentration dependence was realized and interpreted by a selective tendency of both ionophores towards Cu2+ and Cd2+ ions over Pb2+ and Hg2+, especially at high concentrations. The HM ions interactions with the applied calix[4]resorcinarene Langmuir ultra‐thin monolayers were interpreted based on the Gibbs‐Shishkovsky adsorption equation. Moreover, quartz crystal microbalance with impedance measurement (QCM‐I), was applied for the detection of HM ions in solutions. The QCM‐I results showed the effectiveness of the coated QCM‐I crystals in detecting the ions at different concentrations. The detection limit values were in the order of 0.16, 0.3, 0.65, 1.1 ppm (Ionophore I), as well 0.11, 0.45, 0.2, 0.89 (Ionophore II) for the Cu2+, Pb2+, Hg2+ and Cd2+ cations, respectively. Additionally, a selective tendency of both ionophores towards copper ions was shown.  相似文献   

7.
An automatic titration method is reported to resolve ternary mixtures of transition metals (Pb2+, Cd2+ and Cu2+) employing electronic tongue detection and a reduced number of pre‐defined additions of EDTA titrant. Sensors used were PVC membrane selective electrodes with generic response to heavy‐metals, plus an artificial neural network response model. Detection limits obtained were ca. 1 mg L?1 for the three target ions and reproducibilities 3.0 % for Pb2+, 4.1 % for Cd2+ and 5.2 % for Cu2+. The system was applied to contaminated soil samples and high accuracy was obtained for the determination of Pb2+. In the determination Cd2+ and Cu2+, sample matrix showed a significant effect.  相似文献   

8.
In this study, the removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions using the adsorption process onto natural bentonite has been investigated as a function of initial metal concentration, pH and temperature. In order to find out the effect of temperature on adsorption, the experiments were conducted at 20, 50, 75 and 90 °C. For all the metal cations studied, the maximum adsorption was observed at 20 °C. The batch method has been employed using initial metal concentrations in solution ranging from 15 to 70 mg L−1 at pH 3.0, 5.0, 7.0 and 9.0. A flame atomic absorption spectrometer was used for measuring the heavy metal concentrations before and after adsorption. The percentage adsorption and distribution coefficients (K d) were determined for the adsorption system as a function of adsorbate concentration. In the ion exchange evaluation part of the study, it is determined that in every concentration range, adsorption ratios of bentonitic clay-heavy metal cations match to Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR) adsorption isotherm data, adding to that every cation exchange capacity of metals has been calculated. It is shown that the bentonite is sensitive to pH changes, so that the amounts of heavy metal cations adsorbed increase as pH increase in adsorbent-adsorbate system. It is evident that the adsorption phenomena depend on the surface charge density of adsorbent and hydrated ion diameter depending upon the solution pH. According to the adsorption equilibrium studies, the selectivity order can be given as Zn2+>Cu2+>Co2+. These results show that bentonitic clay hold great potential to remove the relevant heavy metal cations from industrial wastewater. Also, from the results of the thermodynamic analysis, standard free energy ΔG 0, standard enthalpy ΔH 0 and standard entropy ΔS 0 of the adsorption process were calculated.  相似文献   

9.
Biosorption of Cu2+ and Pb2+ by Cladop- hora fascicularis was investigated as a function of initial pH, initial heavy metal concentrations, temperature and other co-existing ions. Adsorption equilibriums were well described by Langmuir and Freundlich isotherm models. The maximum adsorption capacities were 1.61 mmol/g for Cu2+ and 0.96 mmol/g for Pb2+ at 298 K and pH 5.0. The adsorption processes were endothermic and biosorption heats calculated by the Langmuir constant b were 39.0 and 29.6 kJ/mol for Cu2+ and Pb2+, respectively. The biosorption kinetics followed the pseudo-second order model. No significant effect on the uptake of Cu2+ and Pb2+ by co-existing cations and anions was observed, except EDTA. Desorption experiments indicated that Na2EDTA was an efficient desorbent for the recovery of Cu2+ and Pb2+ from biomass. The results showed that Cladophora fascicularis was an effective and economical biosorbent material for the removal and recovery of heavy metal ions from wastewater.  相似文献   

10.
Li J  Zhang Y  Cai W  Shao X 《Talanta》2011,84(3):679-683
Analysis of metal ions in environment is of great importance for evaluating the risk of heavy metal to public health and ecological safety. A method for simultaneous determination of metal ions in water samples was developed by using adsorption preconcentration and near-infrared diffuse reflectance spectroscopy (NIRDRS). A high capacity adsorbent of thiol-functionalized magnesium phyllosilicate, named Mg-MTMS, was prepared by co-condensation for preconcentration of Hg2+, Pb2+ and Cd2+ in aqueous solutions. After adsorbing the analytes onto the adsorbent, NIRDRS was measured and PLS models were established for fast and simultaneous quantitative prediction. Because the interaction of the ions with the functional group of the adsorbent can be reflected in the spectra, the models built with the samples prepared by river water were proven to be efficient enough for precise prediction. The determination coefficients (R2) of the validation samples for the three ions were found as high as 0.9197, 0.9599 and 0.9861, respectively. Furthermore, because the high adsorption efficiency of Mg-MTMS, the detected concentrations are as low as milligrams per liter for the three ions, and the concentration can be further reduced. Therefore, the feasibility of quantitative analysis metal ions in river water by NIRDRS is proven and this may provide a new way for fast simultaneous determination of trace metals in environmental waters.  相似文献   

11.
A sensor array of 9 potentiometric PVC sensors has been employed for the simultaneous determination of heavy metals in soil. Sensors were firstly characterized in their response: Nernstian behavior, a concentration range from ca. 10?6 to 10?2 M and selectivity coefficients confirming that all sensors had cross‐response for the target ions. The mixed response system was modeled employing Artificial Neural Networks. The proposed tool was applied to the determination of Pb2+, Cd2+, Cu2+ and Zn2+ in soils at the mg kg?1 level with satisfactory performance. Results were compared and validated against AAS reference methodology, with correlations R2>0.948 for the four heavy metals considered.  相似文献   

12.
Core-shell smart ionic nanogels based on poly(vinyl alcohol) (PVA) core and poly(N-isopropylacrylamide/acrylic acid) p(NIPAm-AAc) shell particles were successfully synthesized through a one-step surfactant-free emulsion polymerization method (SFEP). Different mole ratios of p(NIPAm-AAc) shells were synthesized. The morphologies of PVA/p(NIPAm-AAc) nanogels were investigated by transmission electron microscope (TEM). The data showed the formation of spherical nanoparticles and well-defined core-shell nanogels. PVA/p(NIPAm-AAc) core-shell nanogels were applied as a novel polymeric adsorbent to remove heavy metal pollutants from aqueous solution. Copper(II) (Cu2+) ions were selected as the target pollutant to evaluate these nanoparticles’ adsorption capability. The influence of the uptake conditions such as pH, weight ratio of nanoparticles, time, initial feed concentration, and adsorption temperature on the metal ion binding capacity of nanogels was also tested. Adsorption equilibrium data were calculated according to Langmuir and Freundlich isotherms. It was found that the sorption of Cu2+ was better suited to the Freundlich adsorption model than the Langmuir adsorption model. Also, the selectivity of the nanogels toward the different metal ions such lead (Pb2+) and cadmium (Cd2+) were tested. The maximum of Cu2+ ions adsorbed on to PVA/p(NIPAm-AAc) core-shell nanogels adsorbent was 94 mg/g obtained under simple and fast experimental conditions, indicating these nanogels can be used as effective and practical polymeric adsorbents.  相似文献   

13.
A series of new (MgO) x CuO and (MgO) x MnO2 nanocomposites were prepared and used as adsorbent for removal of As3+, Hg2+, and Pb2+ ions from aqueous solution with high capacity and detection limit. These nanocomposites were synthesized with different molar ratios by sonochemical method in alkaline solution using polyvinylpyrrolidone as a capping agent and were characterized by FTIR, AAS, UV–Vis spectroscopy, and TEM and SEM imaging. The maximum heavy metal ions adsorption was achieved for (MgO)0.32CuO and (MgO)2.9MnO2 nanocomposites assisted by 3-min sonication using ultrasound. Adsorbent capacity of (MgO)0.32CuO reached 500.0 mg/g and detection limit was 0.1 ppb for As3+. Also (MgO)2.9MnO2 nanocomposite adsorbed 457.1 mg/g of Hg2+ and 461.2 mg/g of Pb2+. Extremely low detection limits of 1.5 and 2.0 ppb were obtained for Hg(II) and Pb(II) ions, respectively, which are much lower than the WHO allowable limits. So, these nanocomposites should be excellent candidate for heavy metal removal with advantage of high capacity, high sensitivity, cost effectiveness and easy preparation.  相似文献   

14.
Release of heavy metal onto the water and soil as a result of agricultural and industrial activities may pose a serious threat to the environment. In this study, the adsorption behavior of nano hydroxyapatite with respect to Pb2+, Cd2+ and Ni2+ has been studied in order to consider its application to purity metal finishing wastewater. The batch method has been employed, using metal concentrations in solution ranging from 100 to 400 mg/L. The uptake capacity and distribution coefficients (Kd) were determined for the adsorption system as a function of sorbate concentration. The Langmuir, Freundlich, and Dubinin–Kaganer–Radushkevich (DKR) isotherms applied for sorption studies showed that the amount of metal sorbed on nano hydroxyapatite. It was found that the adsorption phenomena depend on charge density and hydrated ion diameter. According to the equilibrium studies, the selectivity sequence can be given as Pb2+ > Cd2+ > Ni2+. These results show that nano hydroxyapatite holds great potential to remove cationic heavy metal species from industrial wastewater.  相似文献   

15.
In this study, optimum conditions for adsorption of heavy metals such as Cu2+, Cd2+ and Pb2+ onto a low-cost, magnetically modified-alkali conditioned anaerobically digested sludge (MADS) adsorbent were obtained. Response Surface Methodology (RSM) incorporating Central Composite Design (CCD) of experiments was applied to optimize four independent process variables. Statistical analysis was executed by ANOVA and the quadratic model developed had regression coefficients of 0.959, 0.957 and 0.95 for Cu2+, Cd2+ and Pb2+, respectively. The independent variables such as pH, time and initial concentration positively influenced adsorption capacity, qe, whereas the value of qe decreased with an increase in MADS dosage. Model validation experiments for optimization of adsorption process showed comparable results with predicted values. The adsorption capacity of MADS adsorbent at optimum conditions found through RSM analysis was 29.721 mg L?1, 28.551 mg L?1 and 28.601 mg L?1 for Cu2+, Cd2+ and Pb2+ respectively.  相似文献   

16.
17.
A series of macroporous dithiocarbamate chelate resins, III and V, and an oxidized resin, VI, with high adsorption capacity were prepared. The influence of various reaction conditions of amination, dithiocarboxylation, and oxidation were examined. The structure and the conversion of functional groups of resins were confirmed by IR spectra and elemental analysis. The adsorption capacities of Resin II for Hg2+, Cu2+, Zn2+, and Cd2+ are 4.40, 2.44, 1.77, and 1.36 mmol/g, respectively. The adsorption capacities of Resins V and VI for Cu2+. Zn2+, Ni2+, Co3+, Ag+, Hg2+, Cd2+, Pb2+, and Au3+ are 4.07–0.51 and 3.81–0.59 meq ion/g, respectively. The adsorption rate and the influence of pH on the adsorption percentage of the resins for metal ions were examined. Noble metal, transitional metal, and heavy metal ions can be quantitatively adsorbed by the resins. The adsorbed Cu2+, Pb2+, Cd2+, Co3+, and Ni2+ can be quantitatively eluted with 5N HNO3, and the presence of large amounts of Ca2+, Mg2+, Fe3+, and Al3+ did not interfere.  相似文献   

18.
Cellulose/chitosan composites were successfully prepared in a new and basic-based solvent system, ethylene diamine/potassium thiocyanate (EDA/KSCN), by dissolving cellulose and chitosan in 70/30 (w/w) EDA/KSCN at ?19 °C, and then coagulating in methanol. Wide angle X-ray diffraction studies revealed that the EDA/KSCN solvent system is capable of disrupting the hydrogen bonds in both cellulose and chitosan and increase the amorphous regions. Stability tests proved that the composites are stable in acidic aqueous solution due to the hydrogen bonds formed between cellulose and chitosan. This is the first time to dissolve chitosan in a basic-based solvent system and prepare cellulose/chitosan composites in a straightforward way. The adsorption of heavy metal ions (Cu2+, Cd2+, and Pb2+) onto the cellulose/chitosan composites was investigated. The adsorption capacity is highly dependent on pH and the maximum metal uptake was obtained at pH 5.0. Increasing initial metal concentration enhanced the diffusion of metal ions to the composite surface and therefore the metal removal efficiency. Higher percentage of chitosan in the composites also led to higher metal adsorption. The results indicated that the prepared cellulose/chitosan (1:1) composite can adsorb 0.53 mmol/g Cu2+, 0.28 mmol/g Cd2+ and 0.16 mmol/g Pb2+ ions at pH 5.0. The Freundlich model and the pseudo-second-order model were in good agreement with the adsorption isotherms and kinetics, respectively. X-ray photoelectron spectroscopy studies indicated that the binding of heavy metal ions is attributed to the nitrogen atoms of amino groups in chitosan. The composites can be reused for metal removal.  相似文献   

19.
Three types of agricultural waste, citrus maxima peel (CM), passion fruit shell (PF) and sugarcane bagasse (SB), were used to produce biosorbents for removing the heavy metal ions of copper(II), cadmium(II), nickel(II) and lead(II) from a pH 5.0 solution. The properties of biosorbents were characterized using scanning electron microscopy (SEM), zeta potential analyzer, Fourier transform infrared (FTIR) spectroscopy, elemental analyzer and tests of cation exchange capacity (CEC). The result indicated that the selected biosorbents possess rich carboxyl (COOH) and hydroxyl (OH) groups to produce a complexation with the heavy metals. Moreover, the negative surface charge of the biosorbent might adsorb the metal ions through the ion exchange. All of the adsorption isotherms indicated that L-type characters represented complexation and ion exchanges that were the adsorption mechanisms of biosorbents toward heavy metals. Biosorbents with higher oxygen content might generate high adsorption capacities. The adsorption capacities of CM and PF, estimated from the fitting to the Langmuir isotherm, are similar to those reported by others regarding biosorbents.  相似文献   

20.
Abstract

In the present work, a novel composite consisting of magnetite, activated carbon from spent coffee grounds and natural clay (MACCC) was prepared by a one-pot synthesis method via a simultaneous activation and magnetization processes. Various techniques (XRD, FTIR, SEM, TEM, EDX, BET) were utilized to characterize the synthesized composite before utilizing it as an adsorbent for removal of Cu(II), Ni(II) and Pb(II) ions from aqueous solutions. Conditions for removal of heavy metals were thoroughly optimized as 25?°C, pH of 5.5, adsorbent dosage of 2?g L?1, and a contact time of 60?min. Three models of pseudo first-, second-order and intraparticle diffusion as well as three models of Langmuir, Freundlich, and Temkin were used to analyze kinetics and isotherms of the adsorption process. Thermodynamics was discussed completely. Regeneration and recyclability of the adsorbent were also evaluated. Based on the analysis of experimental results, a possible adsorption mechanism of heavy metals onto the synthesized composite was proposed. The maximum capacities caculated from Langmuir model followed the order of Pb(II) > Cu(II) > Ni(II) as 143.56, 96.16 and 84.86?mg·g?1, respectively. The overall results indicated that MACCC is a potential adsorbent for removal of toxic Pb(II), Cu(II) and Ni(II) ions from wastewater due to simple preparation, high removal efficiency and good recyclability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号