首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A self-assembled monolayer (SAM) has been produced by reaction of 1H,1H,2H,2H-perfluorodecyldimethylchlorosilane (PFMS) with an oxidized copper (Cu) substrate and investigated by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), friction force microscopy (FFM), a derivative of AFM, and contact angle measurement. FFM showed a significant reduction in the adhesive force and friction coefficient of PFMS modified Cu (PFMS/Cu) compared to unmodified Cu. The perfluoroalkyl SAM on Cu is found to be extremely hydrophobic, yielding sessile drop static contact angles of more than 130 degrees for pure water and a "surface energy" (which is proportional to the Zisman critical surface tension for a Cu surface with 0 rms roughness) of 14.5 mJm2(nMm). Treatment by exposure to harsh conditions showed that PFMS/Cu SAM can withstand boiling nitric acid (pH=1.8), boiling water, and warm sodium hydroxide (pH=12, 60 degrees C) solutions for at least 30 min. Furthermore, no SAM degradation was observed when PFMS/Cu was exposed to warm nitric acid solution for up to 70 min at 60 degrees C or 50 min at 80 degrees C. Extremely hydrophobic (low surface energy) and stable PFMS/Cu SAMs could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for antiwetting, low adhesion surfaces or dropwise condensation on heat exchange surfaces.  相似文献   

2.
合成了一种环境友好型的缓蚀剂--二硫代氨基甲酸改性葡萄糖(DTCG)。 采用该缓蚀剂在铜表面制备了自组装膜,并运用电化学阻抗谱、极化曲线方法研究了该膜在3%NaCl溶液中对铜的缓蚀性能。 研究结果表明,DTCG自组装膜对铜有良好的缓蚀效果,在自组装时间为4 h、自组装浓度为120 mg/L的缓蚀效率接近于97%。 量子化学计算结果也证明了DTCG具有优异的缓蚀性能。  相似文献   

3.
Nanografting, an atomic force microscopy (AFM) based nanolithography technique, is becoming a popular method for patterning self-assembled monolayers (SAMs). In this technique, a nanoscale patch of a thiol-on-gold SAM is exchanged with a different thiol by the action of an AFM tip operated in contact mode at high load. The results are then imaged in topographic or lateral force microscopy again at low values of the load. One of the problems of contact mode nanografting is that monolayers of large molecules such as proteins are likely to be deformed, damaged, or even removed from the surface by contact mode imaging even when small loads are used. Furthermore, we need to note that the stiffness of the cantilevers used in contact mode is different than that of the cantilevers used in tapping mode and that tip changing in the course of an experiment can be quite inconvenient. Here, we show that a monolayer on a gold substrate can be nanografted using tapping mode AFM (also referred to as amplitude modulation AFM) rather than the commonly used contact mode. While the grafting parameters are somewhat trickier to choose, the results demonstrate that nanografting in tapping mode can make patches of the same quality as those made by contact mode, therefore allowing for gentle imaging of the grafted molecules and the whole SAM without changing the microscope tip.  相似文献   

4.
The attachment of a bifunctional iodo-organo-phosphinate compound to gold (Au) surfaces via chemisorption of the iodine atom is described and used to chelate a redox-active metal cluster via the phosphinate group. XPS, AFM, and electrochemical measurements show that (4-iodo-phenyl)phenyl phosphinic acid (IPPA) forms a tightly bound self-assembled monolayer (SAM) on Au surfaces. The surface coverage of an IPPA monolayer on Au was quantified by an electrochemical method and found to be 0.40 +/- 0.03 nmol/cm2, roughly corresponding to 0.4 monolayers. We show that the Au/IPPA SAM, but not the underivatized Au, adsorbs Mn4O4(Ph2PO2)6 from solution by a phosphinate exchange reaction to yield Au/IPPA/Mn4O4(Ph2PO2)5 SAM. The resulting SAM is firmly bound and not removed by sonication, as confirmed by manganese XPS (Mn 2p1/2) and by AFM. Electrochemistry confirms that Mn4O4(Ph2PO2)6 is anchored on the Au/IPPA surface and that redox chemistry can be mediated between the electrode and the surface-attached complex. Mn4O4(Ph2PO2)6 contains the reactive Mn4O46+ cubane core, a redox-active bioinspired catalyst.  相似文献   

5.
Hydrophobic, methyl-terminated self-assembled monolayer (SAM) surfaces can be used to reduce friction. Among methyl-terminated SAMs, the frictional properties of alkanethiol SAMs and silane SAMs have been well-studied. In this research, we investigated friction of methyl-terminated n-hexatriacontane (C36) SAM and compared its friction properties with the alkanethiol and silane SAMs. Alkane SAM does not have an anchoring group. The alkane molecules stand on the surface by physical adsorption, which leads to a higher surface mobility of alkane molecules. We found that C36 SAM has a higher coefficient of friction than that of octadecyltrichlorosilane (OTS) silane. When an atomic force microscope (AFM) tip was swiped across the alkane SAM with a loading force, we found that the alkane SAM can withstand the tip loading pressure up to 0.48 GPa. Between 0.48 and 0.49Ga, the AFM tip partially penetrated the SAM. When the tip moved away, the deformed SAM healed and maintained the structural integrity. When the loading pressure was higher than 0.49 GPa, the alkane SAM was shaved into small pieces by the tip. In addition, we found that the molecular tilting of C36 molecules interacted with the tribological properties of the alkane SAM surface. On one hand, a higher loading force can push the rod-like alkane molecules to a higher tilting angle; on the other hand, a higher molecular tilting leads to a lower friction surface.  相似文献   

6.
王彬  杜敏  张静 《物理化学学报》2011,27(1):120-126
采用失重法、交流阻抗(EIS)及傅里叶变换红外光谱(FT-IR)、原子力显微镜(AFM)、X射线光电子能谱(XPS)等表面分析测试方法首次研究了硫脲基咪唑啉衍生物(TAI)作为抑制CO2腐蚀的气液双相缓蚀剂的缓蚀行为. 结果表明, 该硫脲基咪唑啉缓蚀剂能有效地抑制Q235 钢在气液双相中的CO2腐蚀. AFM测试结果表明该缓蚀剂能显著地降低碳钢表面的腐蚀破坏, 并且由于碳钢表面形成的缓蚀剂吸附膜的疏水作用,可在AFM探头和碳钢表面之间检测到更大的粘附力, 而探针与试样表面之间的长程静电斥力在气相中增加,在液相中由于表面电荷的屏蔽效应而减小. XPS和FT-IR 光谱测试表明液相中和气相中在碳钢表面形成吸附膜的缓蚀剂成分分别是硫脲基咪唑啉衍生物和其酸水解产物——酰胺. 以上结果也进一步证实了咪唑啉衍生物在酸性溶液中的水解机理.  相似文献   

7.
In situ AFM study of sorbed humic acid colloids at different pH   总被引:7,自引:0,他引:7  
Humic acid colloids adsorbed on the basal plane of cleaved muscovite are investigated under in situ conditions by non-contact mode atomic force microscopy (AFM) in liquid (also called fluid tapping-mode AFM). Structures are found to be of nanometer scale, consisting of flat particles (8–13 nm in diameter), aggregates of particles (20–100 nm), chain-like assemblies, networks and torus-like structures. In contrast to former investigations colloids are investigated in aquatic solution and structures are not influenced by sample preparation. Nanostructure, surface coverage and particle sizes are found to depend on solution pH. Humic colloids can be distinguished from surface roughness and background noise by image processing. Furthermore, an approach to quantify the surface coverage is discussed. Therefore, non-contact mode AFM in liquid is shown to be a powerful method to study the interaction of colloids at solid–liquid interfaces.  相似文献   

8.
Two different positional isomers of 1,2-dicarba-closo-dodecaboranedithiols, 1,2-(HS)(2)-1,2-C(2)B(10)H(10) (1) and 9,12-(HS)(2)-1,2-C(2)B(10)H(10) (2), have been investigated as cluster building blocks for self-assembled monolayers (SAMs) on copper surfaces. These two isomers represent a convenient system in which the attachment of SH groups at different positions on the skeleton affects their acidic character and thus also determines their reactivity with a copper surface. Isomer 1 exhibited etching of polycrystalline Cu films, and a detailed investigation of the experimental conditions showed that both the acidic character of SH groups and the presence of oxygen at the copper surface play crucial roles in how the surface reaction proceeds: whether toward a self-assembled monolayer or toward copper film etching. We found that each positional isomer requires completely different conditions for the preparation of a SAM on copper surfaces. Optimized conditions for the former isomer required the exposure of a freshly prepared Cu surface to vapor of 1 in vacuum, which avoided the presence of oxygen and moisture. Adsorption from a dichloromethane solution afforded a sparsely covered Cu(0) surface; isomer 1 effectively removes the surface copper(I) oxide, forming a soluble product, but apparently binds only weakly to the clean Cu(0) surface. In contrast, adsorption of the latter, less volatile isomer proceeded better from a dichloromethane solution than from the vapor phase. Isomer 2 was even able to densely cover the copper surface cleaned up by the dichloromethane solution of 1. Both isomers exhibited high capacity to remove oxygen atoms from the surface copper(I) oxide that forms immediately after the exposure of freshly prepared copper films to ambient atmosphere. Isomer 2 showed suppression of Cu film oxidation. A number of methods including X-ray photoelectron spectroscopy (XPS), X-ray Rutherford back scattering (RBS), proton-induced X-ray emission (PIXE) analysis, atomic force microscopy (AFM), cyclic voltammetry, and contact angle measurements were used to investigate the experimental conditions for the preparation of SAMs of both positional isomers on copper surfaces and to shed light on the interaction between these molecules and a polycrystalline copper surface.  相似文献   

9.
Self-assembled monolayers (SAMs) covered with nitroso end groups were reduced using an atomic force microscope. As the bias voltage become more negative (beyond -4 V), the surface potential of the scanned area become closer to that of the amino-terminated SAM. Following this chemical change, however, no change in topographic features was detected, implying retained stability of the underlying SAM layer. We then released carboxylate-modified polystyrene (PS) spheres into a pH 4 solution containing the sample. Subsequent imaging with atomic force microscopy (AFM) revealed that these PS spheres were only selectively immobilized on the regions that were originally scanned at -6 V to form amino termination. In summary, using AFM set to a specific voltage, we were able to selectively generate micropatterned regions of the SAM with amino termination.  相似文献   

10.
We have prepared and characterized mixed self-assembled monolayers (SAM) on gold electrodes from azido alkane thiols and various omega-functionalized alkane thiols. In the presence of copper(I) catalysts, these azide-modified surfaces are shown to react rapidly and quantitatively with terminal acetylenes forming 1,2,3-triazoles, via "click" chemistry. The initial azide substituents can be identified and monitored using both grazing-angle infrared (IR) and X-ray photoelectron spectrosopies. Acetylenes possessing redox-active ferrocene substituents react with the azide-terminated mixed SAMs and electrochemical measurements of the ferrocene-modified SAM electrodes have been used to quantify the redox centers attached to these platforms. Time-resolved electrochemical measurements have enabled us to follow the formation of these ferrocene centers and thus to measure the rate of the surface "click" reaction. Under optimal conditions this well-behaved second-order reaction takes place with a rate constant of 1 x 10(3) M(-)(1) s(-)(1). Typical reaction times of several minutes were realized using micromolar concentrations of acetylene. These techniques have been used to construct well-characterized, covalently modified monolayers that can be employed as functional electrode surfaces.  相似文献   

11.
Glass samples of barium crystal glass (handmade and produced by automatic technology) were weathered at controlled conditions. On the weathered glass surface, the high number of corrosion products of approximate size of (5–10) μm was found. On the unweathered (native) glass surfaces, only small non-homogeneities were observed. The micro-Raman spectroscopy was used for study of corrosion products observed by the optical microscopy. It was shown that surface roughness determined by atomic force microscopy (AFM) can be used for the quantification of degree of weathering. The stoichiometric corrosion products can be identified by Raman spectroscopy by application of the proper spectral database. The proposed method of quantification of the degree of weathering was confirmed by the coincidence of AFM results obtained for two kinds of glass samples (handmade and automatic produced) with the same chemical composition but with the different character of macroscopic surface irregularities. On the other hand, the micro-Raman spectroscopy confirmed the same chemical character of weathering process in both cases.  相似文献   

12.
We report the immobilization of gold nanorods onto self-assembled monolayers (SAMs) of 16-mercaptohexadecanoic acid (16-MHA). The simple two step protocol involves formation of a SAM of 16-MHA molecules onto gold-coated glass slides and subsequent immersion of these slides into the gold nanorod solution. The nanorods, formed by a seed-mediated, surfactant-assisted synthesis protocol, are stabilized in solution due to surface modification by the surfactant cetyltrimethylammonium bromide (CTAB). Attractive electrostatic interactions between the carboxylic acid group on the SAM and the positively charged CTAB molecules are likely responsible for the nanorod immobilization. UV-vis spectroscopy has been used to follow the kinetics of the nanorod immobilization. The nature of interaction between the gold nanorods and the 16-MHA SAM has been probed by Fourier transform infrared spectroscopy (FTIR). The surface morphology of the immobilized rods is studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements. SEM was also used to determine the density of the immobilized nanorods as a function of the pH of immobilization. Control over the surface coverage of the immobilized gold nanorods has been demonstrated by simple pH variation. Such well-dispersed immobilized gold nanorods with control over the surface coverage could be interesting substrates for applications such as surface-enhanced Raman spectroscopy (SERS).  相似文献   

13.
使用接触角、原子力显微镜(AFM)、静电力显微镜(EFM)和傅里叶变换红外(FTIR)光谱对辛基三乙氧基硅烷(C8TES)/十八烷基三氯硅烷(OTS)均相混合自组装单分子膜(SAM)及其形成过程中样品表面的润湿性、表面形貌、表面电势和膜内分子的有序度进行了表征,对采用分步法利用C8TES分子空间位阻制备C8TES/OTS均相混合SAM的反应机制进行了研究.结果表明,C8TES/OTS均相混合SAM表面接触角为105°,样品表面平整、光滑;对样品表面电势进行分析后发现,混合SAM表面电势分布均匀,电势频率分布为典型的正态分布;在均相混合SAM的形成过程中,样品表面电势的分布始终十分均匀,电势频率分布均为典型的正态分布;C8TES/OTS均相混合SAM是一种具有上下两层分子排列密度不同的膜结构的单分子膜,其内部结构至少在500 nm×500 nm到20μm×20μm尺度上是高度均匀一致的,膜内没有明显的特征结构,具有典型的均相混合SAM特征.  相似文献   

14.
The composition and structure of a binary mixed self-assembled monolayer (SAM) of 3-aminopropyltriethoxysilane (APS, NH(2)(CH(2))(3)Si(OCH(2)CH(3))(3)) and octadecyltrimethoxysilane (ODS, CH(3)(CH(2))(17)Si(OCH(3))(3)) on a silicon oxide surface have been characterized by water contact-angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and sum frequency generation (SFG) vibrational spectroscopy. XPS demonstrated that APS in the mixed SAM is significantly enriched in comparison to that in solution, indicating the preferential adsorption of APS during the SAM formation. AFM observations showed that the mixed SAM becomes rougher. SFG revealed that the coadsorption of APS induced a conformation disordering in the ODS molecules present in the mixed SAM. The surface enrichment of APS has been explained in terms of differences in the surface adsorption rates of the two components as well as in the self-congregation states of APS molecules in the bulk solution. Furthermore, the structure of the water molecules on the mixed SAM surface in contact with the aqueous solutions at different pH's has also been studied. The results indicate that the mixed-SAM modified surface is positively charged at pH < 5 and negatively charged at pH > 7.  相似文献   

15.
使用接触角、原子力显微镜(AFM)、静电力显微镜(EFM)和傅里叶变换红外(FTIR)光谱对辛基三乙氧基硅烷(C8TES)/十八烷基三氯硅烷(OTS)均相混合自组装单分子膜(SAM)及其形成过程中样品表面的润湿性、表面形貌、表面电势和膜内分子的有序度进行了表征,对采用分步法利用C8TES分子空间位阻制备C8TES/OTS均相混合SAM的反应机制进行了研究. 结果表明,C8TES/OTS均相混合SAM表面接触角为105°,样品表面平整、光滑;对样品表面电势进行分析后发现,混合SAM表面电势分布均匀,电势频率分布为典型的正态分布;在均相混合SAM的形成过程中,样品表面电势的分布始终十分均匀,电势频率分布均为典型的正态分布;C8TES/OTS均相混合SAM是一种具有上下两层分子排列密度不同的膜结构的单分子膜,其内部结构至少在500 nm×500 nm到20 μm×20 μm尺度上是高度均匀一致的,膜内没有明显的特征结构,具有典型的均相混合SAM特征.  相似文献   

16.
Initial atmospheric corrosion of copper, silver, and iron induced by humidity and oxidizing agents was studied in situ by three highly surface‐sensitive and complementary techniques: infrared reflection‐absorption spectroscopy (IRRAS), quartz crystal microbalance (QCM), and tapping‐mode atomic force microscopy (TM‐AFM). These techniques deliver information about the change of the topography of the sample surfaces with emphasis on the shape and lateral distribution of the corrosion products grown within the first 1300–2800 min of weathering (TM‐AFM), as well as chemical (IRRAS) and kinetic (QCM) data. A completely different mechanism of the initial stages of atmospheric corrosion of the three investigated metals could be observed. A uniform growth of corrosion products was seen on the copper surface (identified by IRRAS and XPS to be cuprite‐like) during exposure to synthetic air with 80% relative humidity (RH), whereas the iron surface remained unattacked. The investigations of the silver surface exposed to humidity revealed that silver is attacked by humidity and tends to form oxide and hydroxide surface species. While an increased humidity content of the surrounding atmosphere causes higher corrosion rates on copper, on the exposed silver sample only a change in the degradation mechanism could be observed. The addition of SO2 to the humidified air causes the growth of so‐called ‘second‐order’ features on copper, identified to be CuSO3 · xH2O‐like, which reveals the formation of a new chemical species on the investigated surface. These features are placed on top of the homogeneous formed oxide layer and tend to form well‐defined islands. In contrast to copper, on a silver surface exposed to humidity and SO2 no new chemical species are formed; nevertheless an increased corrosion rate could be observed owing to a change of the chemistry in the physisorbed water layer. Iron exposed to humidity and SO2 still remains unattacked. An iron surface is attacked only if exposed to humidity and SO2 and NO2, which show a synergistic effect by the oxidation of four‐valent sulfur‐oxygen species by NO2. Such an attack leads to the formation of pitting corrosion, which was observed in situ and time‐resolved. The pits mainly occur on predamaged surface structures, such as scratches caused from the polishing process of the samples, and therefore promote the initiation of the corrosion. The results obtained demonstrate the high potential of the surface‐sensitive methods applied for investigating the early stages of corrosion of different metals and for obtaining a better understanding of the molecular mechanisms during degradation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
An alternative method for fabricating functionalized, atomic force microscopy (AFM) tips is presented. This technique is simple and requires only minimal preparation and tip modification to generate chemically sensitive probes that have a robust organic monolayer of flexible terminal chemistry attached to the surface. Specifically, commercially microfabricated Si3N4 AFM tips were modified with self-assembled monolayers (SAMs) of octadecyltrichlorosilane and (11-bromoundecyl)trichlorosilane after removing the native silicon oxide surface layer with concentrated hydrofluoric acid. The structure of these SAM films on solid silicon nitride surfaces was studied using contact angle goniometry and Fourier transform infrared spectroscopy. Pull-off force measurements on various bare (mica, graphite, and silicon) and SAM-functionalized substrates confirm that mechanically robust, long-chain organic silane SAMs can be formed on HF-treated Si3N4 tips without the presence of an intervening oxide layer. Adhesion experiments show that the integrity of the organic film on the chemically modified tips is maintained over repeated measurements and that the functionalized tips can be used for chemical sensing experiments since strong discrimination between different surface chemistries is possible.  相似文献   

18.
A cavitand functionalized with four alkylthioether groups at the lower rim, and four tolylpyridine groups on the upper rim is able to bind to a gold surface by its thioether groups, and forms a coordination cage with [Pd(dppp)(CF(3)SO(3))(2)] by its pyridine groups. The cavitand or the cage complex can be inserted from solution into a self-assembled monolayer (SAM) of 11-mercaptoundecanol on gold. The inserted molecules can be individually detected as they protrude from the SAM by atomic force microscopy (AFM). The cages can be reversibly assembled and disassembled on the gold surface. AFM can distinguish between single cavitand and cage molecules of 2.5 nm and 5.8 nm height, respectively.  相似文献   

19.
We have investigated the selective electroless deposition (ELD) of Cu on functionalized self-assembled monolayers (SAMs). Previous studies have demonstrated that Cu deposits on -COOH and -CH(3) terminated SAMs using ELD. However, the deposited films were rough and contained irregular crystallites. Further, the copper penetrated through the film. In this Article, we demonstrate that copper can be selectively deposited on -COOH terminated SAMs with improved morphology and without penetration of copper through the organic layer. The method employs a Cu(II) seed layer and an additive, adenine or guanine. We demonstrate the efficacy of the technique on photopatterned -CH(3)/-COOH SAMs. Copper is observed to deposit only atop the -COOH terminated SAM area and not on the -CH(3) terminated SAM. The use of a Cu(II) seed layer increased the Cu ELD rate on both -COOH and -CH(3) terminated SAMs. The deposited copper layer strongly adheres to the -COOH terminated SAMs because the copper layer nucleates at Cu(2+)-carboxylate complexes. In contrast, the deposited copper layer can easily be removed from the -CH(3) terminated SAM surface because there is no specific copper-surface interaction. The additives adenine and guanine mediate the interaction of Cu(2+) and the deprotonated -COOH terminated SAMs via the formation of additive-carboxylate complexes. These complexes lead to significantly reduced copper penetration through the SAM. In the case of adenine, the diffusion of copper through the organic film was eliminated. This new technique for copper deposition will facilitate the development of inexpensive molecular electronics, sensors, and other nanotechological devices.  相似文献   

20.
Surface‐initiated atom‐transfer radical polymerization (ATRP) of 4‐vinylpyridine (4VP) on a pretreated Si(100) surface was carried out. The composition and topography of the Si(100) surface modified by poly(4‐vinylpyridine) (P4VP) were characterized by XPS and atomic force microscopy (AFM), respectively. The P4VP layer on the Si(100) surface was used not only as chemisorption sites for the palladium complexes without prior sensitization by SnCl2 solution during the electroless plating, but also as an adhesion promotion layer for the electrolessly deposited copper. The electrolessly deposited copper on the Si–P4VP surface exhibited a 180° peel adhesion strength above 6 N/cm. The adhesion strength was much higher than that of the electrolessly deposited copper to the pristine silicon surface. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号