首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mixed azide-terminated monolayers: a platform for modifying electrode surfaces
Authors:Collman James P  Devaraj Neal K  Eberspacher Todd P A  Chidsey Christopher E D
Institution:Department of Chemistry, Stanford University, Stanford, California 94305, USA. jpc@stanford.edu
Abstract:We have prepared and characterized mixed self-assembled monolayers (SAM) on gold electrodes from azido alkane thiols and various omega-functionalized alkane thiols. In the presence of copper(I) catalysts, these azide-modified surfaces are shown to react rapidly and quantitatively with terminal acetylenes forming 1,2,3-triazoles, via "click" chemistry. The initial azide substituents can be identified and monitored using both grazing-angle infrared (IR) and X-ray photoelectron spectrosopies. Acetylenes possessing redox-active ferrocene substituents react with the azide-terminated mixed SAMs and electrochemical measurements of the ferrocene-modified SAM electrodes have been used to quantify the redox centers attached to these platforms. Time-resolved electrochemical measurements have enabled us to follow the formation of these ferrocene centers and thus to measure the rate of the surface "click" reaction. Under optimal conditions this well-behaved second-order reaction takes place with a rate constant of 1 x 10(3) M(-)(1) s(-)(1). Typical reaction times of several minutes were realized using micromolar concentrations of acetylene. These techniques have been used to construct well-characterized, covalently modified monolayers that can be employed as functional electrode surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号