首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 527 毫秒
1.
We have investigated the seedless electroless deposition (ELD) of Ni on functionalized self-assembled monolayers (SAMs) using scanning electron and optical microscopies, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. For all SAMs studied, the Ni deposition rate is dependent on the bath pH, deposition temperature, and complexing agent. In contrast to the physical vapor deposition of Ni on SAMs, electrolessly deposited Ni does not penetrate through the SAM. This behavior indicates that ELD is a suitable technique for the deposition of low-to-moderate reactivity on organic thin films. We demonstrate that Ni can be selectively deposited on SAMs using two different methods. First, selectivity can be imparted by the formation of Ni(II)-surface complexes. As a demonstration, we selectively deposited Ni on the -COOH terminated SAM areas of patterned -COOH/-CH(3) or -COOH/-OH terminated SAMs. Here, Ni(2+) ions form Ni(2+)-carboxylate complexes with the -COOH terminal group, which comprise the nucleation sites for subsequent metal deposition. Second, we demonstrate that nickel is selectively deposited on the -CH(3) terminated SAM areas of a patterned -OH/-CH(3) terminated SAM. In this case, the Ni(2+) ion does not specifically interact with the -CH(3) terminal group. Rather, selectivity is imparted by the interaction of the reductant, dimethylamine borane (DMAB), with the -OH and -CH(3) terminal groups.  相似文献   

2.
We have investigated the reaction pathways involved in the unseeded electroless deposition of copper on self-assembled monolayers (SAMs) adsorbed on Au, using time-of-flight secondary ion mass spectrometry, optical microscopy, and scanning electron microscopy. At 22 degrees C copper deposits on both -CH3 and -COOH terminated SAMs. No copper deposition is observed on -OH terminated SAMs because the hydroxyl terminal groups react with formaldehyde in the plating solution, forming an acetal which prevents Cu deposition. At higher deposition temperatures (45 degrees C), no Cu is observed to deposit on -CH3 terminated SAMs because Cu2+ ions are not stabilized on the SAM surface. Copper complexes are still able to form with the -COOH terminal group at 45 degrees C, and so copper continues to be deposited on -COOH terminated SAMs. Copper also penetrates through -CH3 and -COOH terminated SAMs to the Au/S interface, suggesting that soft deposition techniques do not prevent the penetration of low-to-moderate reactivity metals through organic films.  相似文献   

3.
We have investigated the interaction of vapor-deposited copper with -CH3, -OH, -OCH3, -COOH, and -CO2CH3 terminated alkanethiolate self-assembled monolayers (SAMs) adsorbed on polycrystalline Au using time-of-flight secondary ion mass spectrometry and density functional theory calculations. For -OH, -COOH, and -CO2CH3 terminated SAMs measurements indicate that for all copper coverages there is a competition between Cu atom bond insertion into C-O bonds, stabilization at the SAM/vacuum interface, and penetration to the Au/S interface. In contrast, on a -OCH3 terminated SAM Cu only weakly interacts with the methoxy group and penetrates to the Au substrate, while for a -CH3 terminated SAM deposited copper only penetrates to the Au/S interface. The insertion of copper into C-O terminal group bonds is an activated process. We estimate that the barriers for Cu insertion are 55 +/- 5 kJ mol(-1) for the ester, 50 +/- 5 kJ mol(-1) for the acid, and 55 +/- 5 kJ mol(-1) for the hydroxyl terminated SAMs. The activation barrier for the copper insertion is much higher for the -OCH3 SAM. Copper atoms with energies lower than the activation barrier partition between complexation (weak interaction) with the terminal groups and penetration through the monolayer to the Au/S interface. Weakly stabilized copper atoms at the SAM/vacuum interface slowly penetrate through the monolayer. In contrast to the case of Al deposition, C-O bond insertion is favored over C=O, C-H, and C-C bond insertion.  相似文献   

4.
Metal overlayers deposited in vacuum onto self-assembled monolayer (SAM) systems serve as models for more complex metalized polymers. Metals (M) deposited onto SAMs with different organic functional end groups exhibit a wide range of behavior, ranging from strong chemical interactions with the end group to complete penetration of the metal through the SAM. In this work, we have characterized the interactions of Cu with the ---COOH of mercaptohexadecanoic acid (MHA, HOOC(CH2)15SH) SAMs self assembled on gold films by using X-ray photoelectron spectroscopy (XPS) to examine the chemical interactions, and a combination of XPS and ion scattering spectroscopy (ISS) to deduce the growth mode and penetration rate of the deposited Cu. We found that submonolayer amounts of Cu react with HOOC, whereas the rest of the Cu remains metallic and penetrates beneath the SAM surface to the SAM  Au interface. Considerable amounts of Cu (5 nm or more) will penetrate beneath the SAM layer, which is ca. 2.5 nm thick, despite the submonolayer presence of Cu at the SAM surface. The penetration rate depends strongly on the Cu deposition rate. Depositing copper onto MHA at 220 K or less, or using faster Cu deposition rates, results in slower or even completely suppressed penetration of the Cu through the SAM layer, whereas exposure to X-rays greatly enhances the penetration rate of large amounts of Cu through the SAM layer. The reacted copper is, based on the XPS 2p and LMM peaks, in the +2 oxidation state, but cannot be identified with a simple, stoichiometric oxide such as Cu2O, CuO, or Cu (OH)2.  相似文献   

5.
The reactions of tetrakis(dimethylamido)titanium, Ti[N(CH(3))(2)](4), with alkyltrichlorosilane self-assembled monolayers (SAMs) terminated by -OH, -NH(2), and -CH(3) groups have been investigated with X-ray photoelectron spectroscopy (XPS). For comparison, a chemically oxidized Si surface, which serves as the starting point for formation of the SAMs, has also been investigated. In this work, we examined the kinetics of adsorption, the spatial extent, and stoichiometry of the reaction. Chemically oxidized Si has been found to be the most reactive surface examined here, followed by the -OH, -NH(2), and -CH(3) terminated SAMs, in that order. On all surfaces, the reaction of Ti[N(CH(3))(2)](4) was relatively facile, as evidenced by a rather weak dependence of the initial reaction probability on substrate temperature (T(s) = -50 to 110 degrees C), and adsorption could be described by first-order Langmuirian kinetics. The use of angle-resolved XPS demonstrated clearly that the anomalous reactivity of the -CH(3) terminated SAM could be attributed to reaction of Ti[N(CH(3))(2)](4) at the SAM/SiO(2) interface. Reaction on the -NH(2) terminated SAM proved to be the "cleanest", where essentially all of the reactivity could be associated with the terminal amine group. In this case, we found that approximately one Ti[N(CH(3))(2)](4) adsorbed per two SAM molecules. On all surfaces, there was significant loss of the N(CH(3))(2) ligand, particularly at high substrate temperatures, T(s) = 110 degrees C. These results show for the first time that it is possible to attach a transition metal coordination complex from the vapor phase to a surface with an appropriately functionalized self-assembled monolayer.  相似文献   

6.
We have developed a simple, robust method by which to construct complex two-dimensional structures based on controlling interfacial chemistry. Our approach is to employ UV-photopatterning and the reaction of vapor-deposited metals with self-assembled monolayers. To demonstrate the method, we have selectively vapor-deposited Mg on a patterned -CH3/-COOH-terminated alkanethiolate surface. The deposited metal penetrates through the -CH3 SAM to the Au/S interface while reacting with and accumulating on top of the -COOH SAM. This work has important applications in molecular/organic electronics, sensing, and other technologies. Our method has many advantages: it is extensible to many different materials, easily parallelized, affords precise nanoscale placement, and is fully compatible with photolithography.  相似文献   

7.
Cobalt, nickel and copper complexes of adenine and guanine, as nucleic-acid constituents, were prepared. The adenine and guanine complexes are of tetrahedral and octahedral geometries, respectively. All are of high spin nature. The nickel complexes are of 2:1 metal:ligand ratio with Ni...Ni direct interaction in the guanine complex. The coordination bonds of adenine metal complexes are calculated and follow the order: Cu(II)-adenine < Ni(II)-adenine < Co(I)-adenine. The Cu(II)-adenine complex is the stronger following the softness of the copper, while that of guanine is less covalent. The copper complexes are with stronger axial field. The differential thermal analysis (DTA) and TGA of the complexes pointed to their stability. The mechanism of the thermal decomposition is detected. The thermodynamic parameters of the dissociation steps are evaluated. The complexes are of semi-conducting behaviour for their technical applications. Empirical equations are deduced between the electrical conducting and the energy of activation of the complexes.  相似文献   

8.
Molecular dynamics simulations are used to study the micronature of the organization of water molecules on the flat surface of well-ordered self-assembled monolayers (SAMs) of 18-carbon alkanethiolate chains bound to a silicon (111) substrate. Six different headgroups (-CH(3), -C═C, -OCH(3), -CN, -NH(2), -COOH) are used to tune the character of the surface from hydrophobic to hydrophilic, while the level of hydration is consistent on all six SAM surfaces. Quantum mechanics calculations are employed to optimize each alkyl chain of the different SAMs with one water molecule and to investigate changes in the configuration of each headgroup under hydration. We report the changes of the structure of the six SAMs with different surfaces in the presence of water, and the area of the wetted surface of each SAM, depending on the terminal group. Our results suggest that a corrugated and hydrophobic surface will be formed if the headgroups of SAM surface are not able to form H-bonds either with water molecules or between adjacent groups. In contrast, the formation of hydrogen bonds not only among polar heads but also between polar heads and water may enhance the SAM surface hydrophilicity and corrugation. We explicitly discuss the micromechanisms for the hydration of three hydrophilic SAM (CN-, NH(2)- and COOH-terminated) surfaces, which is helpful to superhydrophilic surface design of SAM in biomimetic materials.  相似文献   

9.
The interaction with water of protein-resistant monolayers (SAMs), self-assembled from (triethylene glycol) terminated thiol HS(CH2)11(OCH2CH2)3OMe solutions, was studied using in and ex situ polarization-modulated Fourier transform infrared spectroscopy. In particular, shifts in the position of the characteristic C-O-C stretching vibration were observed after the monolayers had been exposed to water. The shift in frequency increased when the SAM was observed in direct contact with a thin layer of water. It was found that the magnitude of the shift also depended on the surface coverage of the SAM. These findings suggest a rather strong interaction of oligo(ethylene glycol) SAMs with water and indicate the penetration of water into the upper region of the monolayer.  相似文献   

10.
The purpose of our research is to study the reactions, interactions or penetration between vacuum-deposited metals (M) and the organic functional end groups (OFGs) of self-assembled monolayers (SAMs) under controlled conditions. Metal/SAM systems are models for understanding bonding at M/organic interfaces and the concomitant adhesion between the different materials. In broad terms, the M/OFGs form interacting interfaces (e.g., Cr/COOH or Cu/COOH) in which the deposit resides on top of the OFGs or weakly interacting interfaces through which the overlayer penetrates and resides at the SAM/gold interface. We present a review of XPS results from weakly interacting systems (e.g., Cu/OH, Cu/CN, Ag/CH3, Ag/COOH) and discuss in more depth the time-temperature dependence of the disappearance of the metal from the M/SAM interface following deposition. In this work, XPS and ISS were used to characterize octadecanethiol (ODT, HS(CH2)17CH3), mercaptoundecanoic acid (MUA, HS(CH2)10COOH), and mercaptohexadecanoic acid (MHA, HS(CH2)15COOH) SAMs before and after depositing up to 1.0 nm Ag or Cu at ca. 10−7 torr. The SAMs were prepared by self-assembly onto gold films on <100> silicon substrates in an ethanolic thiol solution. XPS spectra indicate that no strong interaction occurs between the deposited Ag and the COOH organic functional group (OFG) of MUA or MHA, although a stronger interaction is evident for MHA, and a unidentate is formed for Cu on mercaptoundecanol (MUO). The Ag interaction with ODT is weak. ISS compositional depth profiles (CDPs) for Ag on MHA and MUA and ODT are compared over a temperature range of 113 to 293 K. The ISS results indicate that Ag remains on the surface of MUA for up to 1 h after deposition, whereas Ag penetrates ODT in less than 5 min at 295 K. The time for Ag to penetrate into MHA is several times longer than for MUA, depending on the SAM temperature. The time dependence of the slower Ag penetration through MUA and MHA is compared with that for ODT at temperatures below 295 K. Although Ag/OFGs are expected to have relatively weak interactions, the Ag/COOH system was anticipated to be more interactive than was found, so rapid penetration of Ag through the COOH SAM is an unexpected result.  相似文献   

11.
Self-assembled monolayer (SAM) formation of alkanethiols with ionic, hydrophilic terminal functionalities onto various O(2) plasma/ethanol pretreated gold substrates was characterized to explore the effect of gold surface oxide on the SAM packing quality. Oxygen adsorption induced by the Au(2)O(3) surface residuals are observed on the plasma-oxidized and O(2) plasma/ethanol-rinsed pretreated Au surfaces while no obvious adsorbed oxygen is found on freshly coated and O(2) plasma/ethanol sonication pretreated Au substrates. A model for the formation of hydrophilic terminated SAMs, -OH, -COOH, and -PO(3)H(2) is proposed. According to this model, the ionic and/or other binding interactions between the surface Au(2)O(3) and the alkanethiol hydrophilic terminal end as well as the interactions between the terminal SAM functionalities could cause the packing disorder found on these three SAMs formed on Au substrates containing Au(2)O(3) surface species. Copyright 2001 Academic Press.  相似文献   

12.
An atomistic mechanism has been derived for the initial stages of the adsorption reaction for metal-nitride atomic layer deposition (ALD) from alkylamido organometallic precursors of Ti and Zr on alkyltrichorosilane-based self-assembled monolayers (SAMs). The effect of altering the terminal functional group on the SAM (including -OH, -NH2, -SH, and -NH(CH3)) has been investigated using the density functional theory and the MP2 perturbation theory. Reactions on amine-terminated SAMs proceed through the formation of a dative-bond complex with an activation barrier of 16-20 kcal/mol. In contrast, thiol-terminated SAMs form weak hydrogen-bonded intermediates with activation barriers between 7 and 10 kcal/mol. The deposition of Ti organometallic precursors on hydroxyl-terminated SAMs proceeds through the formation of stronger hydrogen-bonded complexes with barriers of 7 kcal/mol. Zr-based precursors form dative-bonded adducts with near barrierless transitions. This variety allows us to select a kinetically favorable substrate for a chosen precursor. The predicted order of reactivity of differently terminated SAMs and the temperature dependence of the initial reaction probability have been confirmed for Ti-based precursors by recent experimental results. We predict that the replacement of methyl groups by trifluoromethyl groups on the SAM backbone decreases the activation barrier for amine-terminated SAMs by 5 kcal/mol. This opens a route to alter the native reactivities of a given SAM termination, in this case making amine termination energetically viable. The surface distribution of SAM molecules has a strong effect on the adsorption kinetics of Ti-based precursors. Unimolecular side decomposition reactions were found to be kinetically competitive with adsorption at 400 K.  相似文献   

13.
Snow AW  Jernigan GG  Ancona MG 《The Analyst》2011,136(23):4935-4949
Self-assembled monolayers (SAMs) of HS(CH(2))(n)COOH, n = 5, 10, 15 deposited from ethanol solution onto gold are prepared by five approaches, and their packing densities are evaluated by X-ray photoelectron spectroscopy (XPS) measurements. The five approaches are: (1) direct deposition; (2) acetic-acid-assisted deposition; (3) butyl-amine-assisted deposition; (4) displacement of a preformed HS(CH(2))(n)CH(3) (n = 5, 10, 15) SAMs; and (5) co-deposition with HS(CH(2))(n)CH(3) (n = 5, 10, 15). Packing density metrics are calculated from measurements of SAM and substrate photoemission intensities and their attenuations by two methods. In one case the attenuated photoemissions are expressed as a ratio relative to comparable measurements on an experimental HS(CH(2))(n)CH(3) model system. In the other case a new method is introduced where a calculated attenuation based on theoretical random coil and extended chain models is used as the reference to determine a packing density fraction. Packing densities are also correlated with the S2p(Au-bonded):Au4f peak area ratios and with shifts in the C1s binding energies. SAMs prepared by the direct deposition are a partial multilayer where a second molecular layer is physisorbed onto the SAM and not removable by solvent washing. The addition of acetic acid to the deposition solution disrupts dimer associations of HS(CH(2))(n)COOH in solution and at the surface of the monolayer and yields the most ordered monolayer with the highest density of -COOH groups. The addition of butyl amine results in a labile ammonium carbonate ion pair formation but results in a lower packing density in the SAM. The displacement of the preformed HS(CH(2))(n)CH(3) SAM and the co-deposition of HS(CH(2))(n)CH(3) with HS(CH(2))(n)COOH result in SAMs with little incorporation of the -COOH component.  相似文献   

14.
Pentacene films deposited on self-assembled monolayers (SAMs) bearing different terminal functional groups have been studied by reflection-absorption IR, grazing angle XRD, NEXAFS, AFM, and SEM analyses. A film with pentacene molecules nearly perpendicularly oriented was observed on Au surfaces covered with an SAM of alkanethiol derivative of X-(CH2)(n)-SH, with X = -CH(3), -COOH, -OH, -CN, -NH(2), C(60), or an aromatic thiol p-terphenylmethanethiol. On the other hand, a film with the pentacene molecular plane nearly parallel to the substrate surface was found on bare Au surface. A similar molecular orientation was found in thinner ( approximately 5 nm) and thicker (100 nm) deposited films. Films deposited on different surfaces exhibit distinct morphologies: with apparently smaller and rod-shaped grains on clean bare Au surface but larger and islandlike crystals on SAM-modified surfaces. X-ray photoemission electron microscopy (X-PEEM) was used to analyze the orientation of pentacene molecules deposited on a SAM-patterned Au surface. With the micro-NEXAFS spectra and PEEM image analysis, the microarea-selective orientation control on Au was characterized. The ability to control the packing orientation in organic molecular crystals is of great interest in fabricating organic field effect transistors because of the anisotropic nature of charge transport in organic semiconducting materials.  相似文献   

15.
Lipase catalyzed esterification of therapeutic drugs to functional self-assembled monolayers (SAMs) on 316L stainless steel (SS) after assembly has been demonstrated. SAMs of 16-mercaptohexadecanoic acid (-COOH SAM) and 11-mercapto-1-undecanol (-OH SAM) were formed on 316L SS, and lipase catalysis was used to attach therapeutic drugs, perphenazine and ibuprofen, respectively, on these SAMs. The reaction was carried out in toluene at 60 degrees C for 5 h using Novozyme-435 as the biocatalyst. The FTIR spectra after surface modification of -OH SAMs showed the presence of the C=O stretching bands at 1745 cm(-1), which was absent in the FTIR spectra of -OH SAMs. Similarly, the FTIR spectra after the reaction of the -COOH SAM with perphenazine showed two peaks in the carbonyl region, a peak at 1764 cm(-1), which is the representative peak for the C=O stretching for esters. The second peak at 1681 cm(-1) is assigned to the C=O stretching of the remaining unreacted terminal COOH. XPS spectra after lipase catalysis with ibuprofen showed a photoelectron peak evolving at 288.5 eV which arises from the carbon (C=O) of the carboxylic acid of the drug (ibuprofen). Similarly for -COOH SAMs, after esterifiation we see a small, photoelectron peak evolving at 286.5 eV which corresponds to the C in the methylene groups adjacent to the oxygen (C-O), which should evolve only after the esterification of perphenazine with the -COOH SAM. Thus, lipase catalysis provides an alternate synthetic methodology for surface modification of functional SAMs after assembly.  相似文献   

16.
An investigation is presented of the interaction of charged self-assembled monolayers (SAMs) with a monoprotic ionizable acid functional group (-COOH) and uncharged SAMs with a methyl terminated functional group (-CH(3)). The strength of the interactions are determined using an atomic force microscope. For all electrolyte conditions investigated the interactions are not well described by a summation of van der Waals attractions and electrostatic repulsions in a manner suggesting that van der Waals attractions are screened. The repulsions are accurately described as corresponding to two surfaces of different charge interacting with surface charges that are independent of separation (i.e., the constant charge model). A small adhesion force was observed under all conditions and its magnitude increased with NaCl concentration. Copyright 2000 Academic Press.  相似文献   

17.
Unexpectedly, electrochemistry at variable chain length carboxylic acid terminated alkylthiol self‐assembled monolayers (SAMs) on gold electrodes gives rise to a Faradaic process in buffered aqueous electrolyte solution. In particular, the three‐carbon chain length, 3‐mercaptopropionic acid (MPA), exhibits a chemically reversible process with a mid‐point potential of 175 mV vs. Ag/AgCl under conditions of cyclic voltammetry. This process is associated with the presence of trace (parts per billion) amounts of copper(II) ions present in the chemical reagents used to prepare the aqueous electrolyte and also from the gold electrode itself. The carboxylic acid moiety on the SAM concentrates Cu2+ ions by coordination and this surface confined layer is then reduced. Methods to minimize the interference of Cu2+ ions at carboxylic acid terminated SAM are discussed and caution with respect to the interpretation of protein electrochemistry is recommended when using carboxylic acid functionalized SAMs to provide biocompatible electrochemical transduction surfaces, unless a metal free environment can be obtained.  相似文献   

18.
This paper presents a novel method for preparing aromatic, mixed self-assembled monolayers (SAMs) with a dilute surface fraction coverage of protonated amine via in situ hydrolysis of C═N double bond on gold surface. Two imine compounds, (4'-(4-(trifluoromethyl)benzylideneamino)biphenyl-4-yl)methanethiol (CF(3)-C(6)H(4)-CH═N-C(6)H(4)-C(6)H(4)-CH(2)-SH, TFBABPMT) and (4'-(4-cyanobenzylideneamino)biphenyl-4-yl)methanethiol (CN-C(6)H(4)-CH═N-C(6)H(4)-C(6)H(4)-CH(2)-SH, CBABPMT), self-assembled on Au(111) to form highly ordered monolayers, which was demonstrated by infrared reflection absorption spectroscopy (IRRAS) and X-ray photoelectron spectroscopy (XPS). A nearly upright molecular orientation for CF(3)- and CN-terminated SAM was detected by near edge X-ray absorption fine structure (NEXAFS) measurements. Afterward, the acidic catalyzed hydrolysis was carried out in chloroform or an aqueous solution of acetic acid (pH = 3). Systematic studies of this hydrolysis process for CN-terminated SAM in acetic acid at 25 °C were performed by NEXAFS measurements. It was found that about 30% of the imine double bonds gradually cleaved in the first 40 min. Subsequently, a larger hydrolysis rate was observed due to the freer penetration of acetic acid in the SAM and resultant more open molecular packing. Furthermore, the molecular orientation in mixed SAMs did not change during the whole hydrolysis process. This partially hydrolyzed surface contains a controlled amount of free amines/ammonium ions which can be used for further chemical modifications.  相似文献   

19.
The reaction of a transition metal coordination complex, Ti[N(CH(3))(2)](4), with self-assembled monolayers (SAMs) possessing-OH, -NH(2), and -CH(3) terminations has been examined using supersonic molecular beam techniques. The emphasis here is on how the reaction probability varies with incident kinetic energy (E(i)=0.4-2.07 eV) and angle of incidence (theta(i)=0 degrees -60 degrees ). The most reactive surface is the substrate underlying the SAMs-SiO(2) with a high density of -OH(a) (>5 x 10(14) cm(-2)), "chemical oxide." On chemical oxide, the dynamics of adsorption are well described by trapping, precursor-mediated adsorption, and the initial probability of adsorption depends only weakly on E(i) and theta(i). The dependence of the reaction probability on substrate temperature is well described by a model involving an intrinsic precursor state, where the barrier for dissociation is approximately 0.2-0.5 eV below the vacuum level. Reaction with the SAMs is more complicated. On the SAM with the unreactive, -CH(3), termination, reactivity decreases continuously with increasing E(i) while increasing with increasing theta(i). The data are best interpreted by a model where the Ti[N(CH(3))(2)](4) must first be trapped on the surface, followed by diffusion through the SAM and reaction at the SAMSiO(2) interface with residual -OH(a). This process is not activated by E(i) and most likely occurs in defective areas of the SAM. On the SAMs with reactive end groups, the situation is quite different. On both the-OH and -NH(2) SAMs, the reaction with the Ti[N(CH(3))(2)](4) as a function of E(i) passes through a minimum near E(i) approximately 1.0 eV. Two explanations for this intriguing finding are made-one involves the participation of a direct dissociation channel at sufficiently high E(i). A second explanation involves a new mechanism for trapping, which could be termed penetration facilitated trapping, where the Ti[N(CH(3))(2)](4) penetrates the near surface layers, a process that is activated as the molecules in the SAM must be displaced from their equilibrium positions.  相似文献   

20.
The acidities of multiple sites in Cu(+)-adenine and Cu(2+)-adenine complexes have been investigated theoretically. To compare, the acidities of adenine (A) and adenine radical cation (A(*+)) have also been included. The results clearly indicate that the acidities of C-H and N-H groups in Cu(+/2+)-adenine are significantly enhanced relative to the neutral adenine. The acidic order for a given site on adenine and adenine derivatives is as follows: Cu(2+)-adenine > A(*+) > Cu(+)-adenine > A. For Cu(+)-adenine and Cu(2+)-adenine, N3-coordination exhibits N9-H acid, and N1- and N7-coordination exhibits N6-H(a) and N6-H(b) acid, respectively. Additionally, it is found that C2-H group is surprisingly acidic in the coordination complexes. Calculations in aqueous solution reveal that our results can be extrapolated to aqueous solution. Analyses of the electronic properties interpret the highest acidity of Cu(2+)-adenine among the adenine derivatives studied. Also, Electrostatic potential calculations of [A(-H(+))](-) and [A(-H(+))](*) indicate that the removal of H(a) or H(b) from the amino group favors the bidentate coordination, which provides a dative bond from the deprotonated N and the original coordination ligand to copper ion besides the electrostatic interaction between them and thereby stabilizes the [A(-H(+))](-)/[A(-H(+))](*). NBO analysis confirms the electrostatic potential result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号