首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive, rapid, and simple high‐performance liquid chromatography with UV detection method was developed for the simultaneous determination of seven phthalic acid esters (dimethyl phthalate, dipropyl phthalate, di‐n‐butyl phthalate, benzyl butyl phthalate, dicyclohexyl phthalate, di‐(2‐ethylhexyl) phthalate, and di‐n‐octyl phthalate) in several kinds of beverage samples. Ultrasound and vortex‐assisted dispersive liquid–liquid microextraction method was used. The separation was performed using an Intersil ODS‐3 column (C18, 250 × 4.6 mm, 5.0 μm) and a gradient elution with a mobile phase consisting of MeOH/ACN (50:50) and 0.2 M KH2PO4 buffer. Analytes were detected by a UV detector at 230 nm. The developed method was validated in terms of linearity, limit of detection, limit of quantification, repeatability, accuracy, and recovery. Calibration equations and correlation coefficients (> 0.99) were calculated by least squares method with weighting factor. The limit of detection and quantification were in the range of 0.019–0.208 and 0.072–0.483 μg/L. The repeatability and intermediate precision were determined in terms of relative standard deviation to be within 0.03–3.93 and 0.02–4.74%, respectively. The accuracy was found to be in the range of –14.55 to 15.57% in terms of relative error. Seventeen different beverage samples in plastic bottles were successfully analyzed, and ten of them were found to be contaminated by different phthalic acid esters.  相似文献   

2.
In this study, a MIL‐53(Al)‐packed column was successfully prepared and firstly applied to separate phthalate acid esters (butyl benzyl phthalate, di‐n‐butyl phthalate, diethyl phthalate, bis(2‐ethylhexyl) phthalate, and dimethyl phthalate). Their baseline separation could be achieved within 12 min with a mobile phase of methanol/H2O ratio at 92:8, and the temperature and flow rate was 40°C and 0.6 mL/min, respectively. The stacking effect and electrostatic force were the key factors in the separation. Moreover, there was a substantial linear relation between the peak height, peak area, and the analyte mass, and the relative standard deviations of retention time, peak height, peak area, and half peak width for five replicate separations of the analytes were within the ranges 0.31–0.88%, 0.72–1.52%, 1.33–1.53%, and 0.46–0.95%, respectively. The results of the calculation of the thermodynamics parameters showed that the separation of phthalate acid esters was controlled by both enthalpy change (ΔH) and entropy change (ΔS).  相似文献   

3.
In this article, a new method for simultaneous determination of six phthalate esters was developed by a combination of electrospun nylon6 nanofibers mat‐based solid phase extraction with high performance liquid chromatography‐ultraviolet detector (HPLC‐UV). The six phthalate esters were dimethyl phthalate (DMP), diethyl phthalate (DEP), butyl benzyl phthalate (BBP), di‐n‐butyl phthalate (DBP), di‐(2‐ethylhexyl) phthalate (DEHP) and dioctyl phthalate (DOP). Under optimized conditions, all target analytes in 50 mL environmental water samples could be completely extracted by 2.5 mg nylon6 nanofibers mat and eluted by 100 µL solvent. Compared with C18 cartridges solid phase extraction, C18 disks solid phase extraction and national standard method (China), nylon6 nanofibers mat‐based solid phase extraction was advantageous in aspects of simple and fast operation, low consumption of extraction materials and organic solvents. The four methods were applied to analysis of environment water samples. All the results indicated that the determination values of target compounds with the proposed method were consistent with C18 cartridges and C18 disks solid phase extraction method, and the new method was better than the national standard method in aspects of recovery, LOD and precision. Therefore, nylon6 nanofibers mat has great potential as a novel material for solid phase extraction.  相似文献   

4.
Magnetic molecularly imprinted polymer nanoparticles for di‐(2‐ethylhexyl) phthalate were synthesized by surface imprinting technology with a sol–gel process and used for the selective and rapid adsorption and removal of di‐(2‐ethylhexyl) phthalate from aqueous solution. The prepared magnetic molecularly imprinted polymer nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and vibrating sample magnetometry. The adsorption of di‐(2‐ethylhexyl) phthalate onto the magnetic molecularly imprinted polymer was spontaneous and endothermic. The adsorption equilibrium was achieved within 1 h, the maximum adsorption capacity was 30.7 mg/g, and the adsorption process could be well described by Langmuir isotherm model and pseudo‐second‐order kinetic model. The magnetic molecularly imprinted polymer displayed a good adsorption selectivity for di‐(2‐ethylhexyl) phthalate with respect to dibutyl phthalate and di‐n‐octyl phthalate. The reusability of magnetic molecularly imprinted polymer was demonstrated for at least eight repeated cycles without significant loss in adsorption capacity. The adsorption efficiencies of the magnetic molecularly imprinted polymer toward di‐(2‐ethylhexyl) phthalate in real water samples were in the range of 98–100%. These results indicated that the prepared adsorbent could be used as an efficient and cost‐effective material for the removal of di‐(2‐ethylhexyl) phthalate from environmental water samples.  相似文献   

5.
A gas chromatography–mass spectrometry assay was developed and validated for the simultaneous determination of phthalates and adipates in human serum. The phthalates and adipates studied were dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzylbutyl phthalate, di‐2‐ethylhexyl phthalate, di‐n‐octyl phthalate, diethyl adipate, dibutyl adipate, diisobutyl adipate, bis(2‐butoxyethyl) adipate and di‐2‐ethylhexyl adipate, with diisooctyl phthalate as internal standard. The extraction and cleaning up procedure was carried out with solid‐phase extraction cartridges containing dimethyl butylamine groups, which showed extraction efficiencies over 88% for each analyte and the internal standard. The calibration curves obtained were linear with correlation coefficients greater than 0.98. For all analytes, the assay gave CV% values for intra‐day precision from 4.9 to 13.3% and mean accuracy values from 91.4 to 108.4%, while inter‐day precision was 5.2–13.4% and mean accuracy 91.0–110.2%. The limits of detection for the assay of phthalates and adipates were in the range 0.7–4.5 ng/mL. The method is simple, sensitive and accurate, and allows for simultaneous determination of nanogram levels of phthalates and adipates in human serum. It was successfully applied to an investigation on the level of phthalates and adipates in a non‐occupationally exposed population.  相似文献   

6.
An ultrasound‐assisted magnetic solid‐phase extraction procedure with chloromethylated polystyrene‐coated Fe3O4 nanospheres as magnetic adsorbents has been developed to determine eight phthalate esters (bis(4‐methyl‐2‐pentyl) phthalate, dipentyl phthalate, dihexyl phthalate, benzyl butyl phthalate, bis(2‐butoxyethyl) phthalate, dicyclohexyl phthalate, di‐n‐octyl phthalate, and dinonyl phthalate) simultaneously in beverage samples, in combination with gas chromatography coupled to tandem mass spectrometry for the first time. Several factors related to magnetic solid‐phase extraction efficiencies, such as amount of adsorbent, extracting time, ionic strength, and desorption conditions were investigated. The enrichment factors of the method for the eight analytes were over 2482. A good linearity was observed in the range of 10–500 ng/L for bis(2‐butoxyethyl) phthalate and 2–500 ng/L for the other phthalate esters with correlation coefficients ranging from 0.9980 to 0.9998. The limits of detection and quantification for the eight phthalate esters were in the range of 0.20–2.90 and 0.67–9.67 ng/L, respectively. The mean recoveries at three spiked levels were 75.8–117.7%, the coefficients of variations were <11.6%. The proposed method was demonstrated to be a simple and efficient technique for the trace analysis of the phthalate esters in beverage samples.  相似文献   

7.
Liquid‐phase microextraction based on gemini‐based supramolecular solvent was successfully applied as a preconcentration step before gas chromatography with mass spectrometry. To eliminate the interferences of gemini surfactant, the analytes were back‐extracted into an immiscible organic solvent in the presence of ultrasonic sound waves. Three phthalate esters (di‐n‐butyl‐, butylbenzyl‐, bis(2‐ethylhexyl)‐, and di‐n‐octyl phthalatic esters) were used as target analytes. The effective parameters on extraction efficiency of the target analytes (i.e., the amount of surfactant and volume of propanol as major components making up the supramolecular solvent, ionic strength, hexane volume, and ultrasound time) were investigated and optimized by a one‐variable‐at‐a‐time method. Under the optimum conditions, the preconcentration factors of the analytes were in the range of 95–182. The linear dynamic range of 0.05–200.00 μg/L with a correlation of determination of (R 2) ≥ 0.9935 was obtained. The proposed method had an excellent limit of detection (S/N = 3) of 0.01 for di‐n‐octyl and 0.02 μg/L for butylbenzyl‐ and di‐n‐butyl‐phthalatic ester. Good relative recoveries in the range of 85.7–105.2% guaranteed the accuracy of the amount of phthalates distinguished in the nonspiked samples.  相似文献   

8.
Dispersive liquid–liquid microextraction method was developed for the determination of the amount of phthalate esters in bottled drinking water samples and dispersive liquid–liquid microextraction samples were analyzed by GC–MS. Various experimental conditions influencing the extraction were optimized. Under the optimized conditions, very good linearity was observed for all analytes in a range between 0.05 and 150 μg/L with coefficient of determination (R2) between 0.995 and 0.999. The LODs based on S/N = 3 were 0.005–0.22 μg/L. The reproducibility of dispersive liquid–liquid microextraction was evaluated. The RSDs were 1.3–5.2% (n = 3). The concentrations of phthalates were determined in bottled samples available in half shell. To understand the leaching profile of these phthalates from bottled water, bottles were exposed to direct sunlight during summer (temperature from 34–57°C) and sampled at different intervals. Result showed that the proposed dispersive liquid–liquid microextraction is suitable for rapid determination of phthalates in bottled water and di‐n‐butyl, butyl benzyl, and bis‐2‐ethylhexyl phthalate compounds leaching from bottles up to 36 h. Thereafter, degradation of phthalates was observed.  相似文献   

9.
Four different plasticizers were applied to make different poly(vinyl chloride) (PVC) gels, poly(vinyl chloride)‐bis(2‐ethylhexyl)phthalate (PVC‐DOP), poly(vinyl chloride)‐di‐n‐butylphthalate, poly(vinyl chloride)‐bis(2‐ethylhexyl)adipate, and poly(vinyl chloride)‐tris(2‐ethylhexyl)trimellitate. In our previous work, we reported that PVC‐DOP gel exhibits novel and reversible deformations of creeping and jointlike bending induced by direct current electric fields. In this article, we scrutinize the effects of plasticizers on electromechanical actuations, that is, reversible creeping and bending actuation with four of the different aforementioned gels. We measured the relative creeping distance, creeping area, creeping velocity, current observed, and bending angle as a function of applied electric fields for different PVC gels and found significant differences among them. To explain these variations, we compared the utility of plasticizers on the basis of the properties of different PVC gels, such as plasticizer‐retention ability, bending modulus, elongation at break, and the dielectric constant. The mentioned properties of the PVC gels played vital roles on their electromechanical actuations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2119–2127, 2003  相似文献   

10.
Two laboratory-based linear horizontal agitation methods for determining a range of phthalate esters from soft polyvinyl chloride (PVC) toys are presented in compliance with EU legislation. Both of these methods were validated through interlaboratory trials using a PVC reference disc and four soft PVC toy/childcare articles intended or likely to be mouthed. Two of these commercial samples contained diisononyl phthalate (DINP), one diisodecyl phthalate (DIDP) and one bis(2-ethylhexyl) phthalate (DEHP). Acceptable repeatability (r, within-laboratory) and reproducibility (R, between-laboratory) data were demonstrated for both the analytical detection technique (GC-MS) (r = 9.8% and R = 8.1%) and agitation/extraction procedure (r=21.9% and R = 35.3% at 37 degrees C; r = 22.7% and R = 31.1% at 65 degrees C) for DINP. This was achieved through the participation of six laboratories. The remaining three phthalates from the EU Scientific Committee for Toxicity, Ecotoxicity and the Environment (CSTEE) list--dibutyl phthalate (DBP), benzyl butyl phthalate (BBP) and di-n-octyl phthalate (DnOP)--were not tested due to the unavailability of suitable materials.  相似文献   

11.
Copper‐free azide‐alkyne click chemistry is utilized to covalently modify polyvinyl chloride (PVC). Phthalate plasticizer mimics di(2‐ethylhexyl)‐1H‐triazole‐4,5 dicarboxylate (DEHT), di(n‐butyl)‐1H‐1,2,3‐triazole‐4,5‐dicarboxylate (DBT), and dimethyl‐1H‐triazole‐4,5‐dicarboxylate (DMT) are covalently attached to PVC. DEHT, DBT, and DMT have similar chemical structures to traditional plasticizers di(2‐ethylhexyl) phthalate (DEHP), di(n‐butyl) phthalate (DBP), and dimethyl phthalate (DMP), but pose no danger of leaching from the polymer matrix and forming small endocrine disrupting chemicals. The synthesis of these covalent plasticizers is expected to be scalable, providing a viable alternative to the use of phthalates, thus mitigating dangers to human health and the environment.

  相似文献   


12.
A quantified method for the determination of 17 phthalate esters (PAEs) in edible vegetable oil by GC‐MS with the pretreatment of acetonitrile extraction and silica/N‐(n‐Propyl)ethylenediamine‐mixed SPE column was established. By the quantification of internal standard of D4‐di(2‐ethylhexyl) phthalate, a good linearity range of related 17 PAEs was observed. The correlation coefficient was ranged at 0.994~1.000, and the standard lowest quantified level was 0.05~0.15 mg/L. The spiking recoveries of 17 PAEs were 78.3~108.9% with the relative standard deviations of 4.3~12.1% (n = 6). The method detection limits were 0.1~0.2 mg/kg. Meanwhile, PAEs were determined in 30 plastic buckets of edible vegetable oil from supermarkets in Hangzhou city of China. The survey of 30 oil samples showed di(2‐ethylhexyl) phthalate (DEHP) had the 100% (30/30) detection rate. The levels of diisobutyl phthalate with 86.7% (26:30), di‐n‐butyl phthalate (DBP) with 70% (21:30) and diethyl phthalate with 10% (3:30) were detected. It was worth note that DBP with 16.7% (5:30) samples and DEHP with 10% (3:30) samples were beyond the regular migrating limit, which indicated that more attention should be paid to the PAEs in oil with plastic package.  相似文献   

13.
In this work, a porous carbon derived from amino‐functionalized material of Institut Lavoisier (C‐NH2‐MIL‐125) was prepared and coated onto a stainless‐steel wire through sol–gel technique. The coated fiber was used for the solid‐phase microextraction of trace levels of phthalate esters (diallyl phthalate, di‐iso‐butyl ortho‐phthalate, di‐n‐butyl ortho‐phthalate, benzyl‐n‐butyl ortho‐phthalate, and bis(2‐ethylhexy) ortho‐phthalate) from tea beverage samples before gas chromatography with mass spectrometric analysis. Several experimental parameters that could influence the extraction efficiency such as extraction time, extraction temperature, sample pH, sample salinity, stirring rate, desorption temperature and desorption time, were investigated. Under the optimal conditions, the linearity existed in the range of 0.05–30.00 μg/L for green jasmine tea beverage samples, and 0.10–30.00 μg/L for honey jasmine tea beverage samples, with the correlation coefficients (r) ranging from 0.9939 to 0.9981. The limits of detection of the analytes for the method were 2.0–3.0 ng/L for green jasmine tea beverage sample, and 4.0–5.0 ng/L for honey jasmine tea beverage sample, depending on the compounds. The recoveries of the analytes for the spiked samples were in the range of 82.0–106.0%, and the precision, expressed as the relative standard deviations, was less than 11.1%.  相似文献   

14.
Gaskets for lids of glass jars usually consist of poly(vinyl chloride) (PVC) containing plasticisers and additional additives, which may migrate into packed foodstuffs. To conform to legal regulations, any such migration has to be determined analytically, which is a big challenge due to the huge chemical variety of additives in use. Therefore, a rapid screening method by means of direct analysis in real time mass spectrometry (DART‐MS), using a single‐quadrupole mass spectrometer, was developed. On introducing a plastisol sample into the DART interface, protonated molecules and ammonium adducts were obtained as the typical ionisation products of any additives present, and cleavages of ester bonds as typical fragmentation processes. Generally, additives present in the 1% range could be directly and easily identified if ion suppressive effects deriving from specific molecules did not occur. These effects could be avoided by analysing toluene extracts of plastisol samples, and this also improved the sensivity. Using this method, it was possible to identify phthalates, fatty acid amides, tributyl O‐acetylcitrate, dibutyl sebacate, bis(2‐ethylhexyl) adipate, 1,2‐diisononyl 1,2‐cyclohexanedicarboxylate, and even more complex additives like acetylated mono‐ and diacylglycerides, epoxidised soybean oil, and polyadipates, with a limit of detection of ≤1% in PVC plastisols. Only in the case of epoxidised linseed oil were levels of ≥5% required for identification. The detection of azodicarbonamide, used as a foaming agent within the manufacturing process, was possible in principle, but was not highly reproducible due to the very low concentrations in plastisols. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The fabrication of novel poly(ionic liquids)‐modified polystyrene (PSt) magnetic nanospheres (PILs‐PMNPs) by a one‐pot miniemulsion copolymerization reaction was achieved through an efficient microwave‐assisted synthesis method. The morphology, structure, and magnetic behavior of the as‐prepared magnetic materials were characterized by using transmission electron microscopy, vibrating sample magnetometry, etc. The magnetic materials were utilized as sorbents for the extraction of phthalate esters (PAEs) from beverage samples followed by high‐performance ultrafast liquid chromatography analysis. Significant extraction parameters that could affect the extraction efficiencies were investigated particularly. Under optimum conditions, good linearity was obtained in the concentration range of 0.5–50 (dimethyl phthalate), 0.3–50 (diethyl phthalate), 0.2–50 (butyl benzyl phthalate), and 0.4–50 μg/L (di‐n‐butyl phthalate), with correlation coefficients R 2 > 0.9989. Limits of detection were in the range 125–350 pg. The proposed method was successfully applied to determine PAEs from beverage samples with satisfactory recovery ranging from 77.8 to 102.1% and relative standard deviations ranging from 3.7 to 8.4%. Comparisons of extraction efficiency with PSt‐modified MNPs as sorbents were performed. The results demonstrated that PILs‐PMNPs possessed an excellent adsorption capability toward the trace PAE analytes.  相似文献   

16.
We describe a highly sensitive micro‐solid‐phase extraction method for the pre‐concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high‐performance liquid chromatography with a variable‐wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2‐ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting‐out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3–200 μg/L. The limits of detection were 0.04–0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples.  相似文献   

17.
Chitosan‐grafted polyaniline was synthesized and applied as a sorbent for the preconcentration of phthalate esters in dispersive solid‐phase extraction. By coupling dispersive solid‐phase extraction with high‐performance liquid chromatography and response surface methodology (central composite design), a reliable, sensitive, and cost‐effective method for simultaneous determination of phthalate esters including dimethyl phthalate, di‐n‐butyl phthalate, and di(2‐ethylhexyl)phthalate was developed. The morphology of sorbent had been studied by scanning electron microscopy and its chemical structure confirmed by Fourier transform infrared spectroscopy. Under optimum condition, good linearity was observed in the range of 5.0–5000.0 ng/mL. The limits of detection (S/N = 3) and limits of quantification (S/N = 10) were 0.1–0.3 and 0.3–1 ng/mL, respectively. The relative standard deviations were less than 8.8%. Finally, this procedure was employed for extraction of trace amounts of phthalic acid esters in milk samples, the relative recoveries ranged from 82 to 103%.  相似文献   

18.
To extract, preconcentrate and determine the trace level of environmental contaminants, a novel mixed hemimicelles solid‐phase extraction (MHSPE) method based on mesoporous silica‐coated magnetic nanoparticles (Fe3O4/meso‐SiO2 NPs) as adsorbent was developed for extraction of phthalate esters from water samples. The Fe3O4/meso‐SiO2 NPs were synthesized by using a combination of hydrothermal method and sol‐gel method. The obtained Fe3O4/meso‐SiO2 NPs possessed a large surface area (570 m2/g), superparamagnetism, and uniform mesopores (2.8 nm). MHSPE parameters, such as the amount of surfactant, pH of sample, shaking and separation time, eluent and breakthrough volume that may influence the extraction of analytes greatly, were further investigated. Under the optimized conditions, the extraction was completed in 20 min and a concentration factor of 500 was achieved by extracting 250 mL water sample. Detection limits obtained of butyl‐benzyl phthalate (BBP), di‐n‐butyl phthalate (DnBP), di‐(2‐ethylhexyl) phthalate (DEHP) and di‐n‐cotyl phthalate (DnOP) were 12, 21, 12, and 32 ng/L, respectively. The proposed method exhibited high extraction efficiency and relatively short time for extracting the target compounds.  相似文献   

19.
A microdispersive solid‐phase extraction method has been developed using multiwalled carbon nanotubes of 110–170 nm diameter and 5–9 μm length for the extraction of a group of nine phthalic acid esters (i.e., bis(2‐methoxyethyl) phthalate, bis‐2‐ethoxyethyl phthalate, dipropyl phthalate, butylbenzyl phthalate, bis‐2‐n‐butoxyethyl phthalate, bis‐isopentyl phthalate, bis‐n‐pentyl phthalate, dicyclohexyl phthalate, and di‐n‐octyl phthalate) from tap water as well as from different beverages commercialized in plastic bottles (mineral water, lemon‐ and apple‐flavored mineral water, and an isotonic drink). Determination was carried out by high‐performance liquid chromatography coupled to mass spectrometry. The extraction procedure was optimized following a step‐by‐step approach, being the optimum extraction conditions: 50 mL of each sample at pH 6.0, 80 mg of sorbent, and 25 mL of acetonitrile as elution solvent. To validate the methodology, matrix‐matched calibration and a recovery study were developed, obtaining determination coefficients >0.9906 and absolute recovery values between 70 and 117% (with relative standard deviations < 17%) in all cases. The limits of quantification of the method were between 0.173 and 1.45 μg/L. After the evaluation of the matrix effects, real samples were also analyzed, finding butylbenzyl phthalate in all samples (except in apple‐flavored mineral water), though at concentrations below its limit of quantification of the method.  相似文献   

20.
A novel method using microemulsion electrokinetic chromatography combining accelerated solvent extraction was developed for quantitative analysis of six phthalate esters (PAEs) including dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, as well as dioctyl phthalate. The effect of each individual component within the microemulsions, i.e. oil phase, surfactant and co-surfactant on resolution of the analytes was systematically studied. Baseline separation of six PAEs was achieved within 26?min by using the microemulsion buffer containing a 60?mmol/L borate buffer at pH 9.0, 0.5% v/v n-octane as oil droplets, 100?mmol/L sodium cholate as surfactant and 5.0% v/v 1-butanol as co-surfactant. The purposed accelerated solvent extraction-microemulsion electrokinetic chromatography method was successfully applied to the determination of trace amount of PAEs in soil samples collected from three different fields in areas of Fujian Province and the contents of dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate and dioctyl phthalate were 0.63-0.68, 0.32-0.63, 2.53-3.96, 0-1.75, 7.32-11.7 and 0-3.46mg/kg, respectively. It was validated that the results were consistent with those obtained by GC-MS method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号