首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitosan‐grafted polyaniline was synthesized and applied as a sorbent for the preconcentration of phthalate esters in dispersive solid‐phase extraction. By coupling dispersive solid‐phase extraction with high‐performance liquid chromatography and response surface methodology (central composite design), a reliable, sensitive, and cost‐effective method for simultaneous determination of phthalate esters including dimethyl phthalate, di‐n‐butyl phthalate, and di(2‐ethylhexyl)phthalate was developed. The morphology of sorbent had been studied by scanning electron microscopy and its chemical structure confirmed by Fourier transform infrared spectroscopy. Under optimum condition, good linearity was observed in the range of 5.0–5000.0 ng/mL. The limits of detection (S/N = 3) and limits of quantification (S/N = 10) were 0.1–0.3 and 0.3–1 ng/mL, respectively. The relative standard deviations were less than 8.8%. Finally, this procedure was employed for extraction of trace amounts of phthalic acid esters in milk samples, the relative recoveries ranged from 82 to 103%.  相似文献   

2.
An ultrasound‐assisted magnetic solid‐phase extraction procedure with chloromethylated polystyrene‐coated Fe3O4 nanospheres as magnetic adsorbents has been developed to determine eight phthalate esters (bis(4‐methyl‐2‐pentyl) phthalate, dipentyl phthalate, dihexyl phthalate, benzyl butyl phthalate, bis(2‐butoxyethyl) phthalate, dicyclohexyl phthalate, di‐n‐octyl phthalate, and dinonyl phthalate) simultaneously in beverage samples, in combination with gas chromatography coupled to tandem mass spectrometry for the first time. Several factors related to magnetic solid‐phase extraction efficiencies, such as amount of adsorbent, extracting time, ionic strength, and desorption conditions were investigated. The enrichment factors of the method for the eight analytes were over 2482. A good linearity was observed in the range of 10–500 ng/L for bis(2‐butoxyethyl) phthalate and 2–500 ng/L for the other phthalate esters with correlation coefficients ranging from 0.9980 to 0.9998. The limits of detection and quantification for the eight phthalate esters were in the range of 0.20–2.90 and 0.67–9.67 ng/L, respectively. The mean recoveries at three spiked levels were 75.8–117.7%, the coefficients of variations were <11.6%. The proposed method was demonstrated to be a simple and efficient technique for the trace analysis of the phthalate esters in beverage samples.  相似文献   

3.
In this work, a porous carbon derived from amino‐functionalized material of Institut Lavoisier (C‐NH2‐MIL‐125) was prepared and coated onto a stainless‐steel wire through sol–gel technique. The coated fiber was used for the solid‐phase microextraction of trace levels of phthalate esters (diallyl phthalate, di‐iso‐butyl ortho‐phthalate, di‐n‐butyl ortho‐phthalate, benzyl‐n‐butyl ortho‐phthalate, and bis(2‐ethylhexy) ortho‐phthalate) from tea beverage samples before gas chromatography with mass spectrometric analysis. Several experimental parameters that could influence the extraction efficiency such as extraction time, extraction temperature, sample pH, sample salinity, stirring rate, desorption temperature and desorption time, were investigated. Under the optimal conditions, the linearity existed in the range of 0.05–30.00 μg/L for green jasmine tea beverage samples, and 0.10–30.00 μg/L for honey jasmine tea beverage samples, with the correlation coefficients (r) ranging from 0.9939 to 0.9981. The limits of detection of the analytes for the method were 2.0–3.0 ng/L for green jasmine tea beverage sample, and 4.0–5.0 ng/L for honey jasmine tea beverage sample, depending on the compounds. The recoveries of the analytes for the spiked samples were in the range of 82.0–106.0%, and the precision, expressed as the relative standard deviations, was less than 11.1%.  相似文献   

4.
The fabrication of novel poly(ionic liquids)‐modified polystyrene (PSt) magnetic nanospheres (PILs‐PMNPs) by a one‐pot miniemulsion copolymerization reaction was achieved through an efficient microwave‐assisted synthesis method. The morphology, structure, and magnetic behavior of the as‐prepared magnetic materials were characterized by using transmission electron microscopy, vibrating sample magnetometry, etc. The magnetic materials were utilized as sorbents for the extraction of phthalate esters (PAEs) from beverage samples followed by high‐performance ultrafast liquid chromatography analysis. Significant extraction parameters that could affect the extraction efficiencies were investigated particularly. Under optimum conditions, good linearity was obtained in the concentration range of 0.5–50 (dimethyl phthalate), 0.3–50 (diethyl phthalate), 0.2–50 (butyl benzyl phthalate), and 0.4–50 μg/L (di‐n‐butyl phthalate), with correlation coefficients R 2 > 0.9989. Limits of detection were in the range 125–350 pg. The proposed method was successfully applied to determine PAEs from beverage samples with satisfactory recovery ranging from 77.8 to 102.1% and relative standard deviations ranging from 3.7 to 8.4%. Comparisons of extraction efficiency with PSt‐modified MNPs as sorbents were performed. The results demonstrated that PILs‐PMNPs possessed an excellent adsorption capability toward the trace PAE analytes.  相似文献   

5.
The previously reported procedure for the determination of the total phthalate in fatty food involved the extraction of phthalates using chloroform/methanol followed by the removal of the solvents before alkaline hydrolysis requiring 20 h and derivatization of phthalic acid. In this study, a phase‐transfer catalyst (tetrabutylammonium chloride) was used in the liquid–liquid heterogeneous hydrolysis of phthalates in oil matrix shortening the reaction time to within 25 min. The resulting phthalic acid in the hydrolysate was extracted by a novel molecular complex based dispersive liquid–liquid microextraction method coupled with back‐extraction before high‐performance liquid chromatography coupled with photodiode array detection. Under the optimal experimental conditions, the linearity of the method was in the range of 0.5–12 nmol/g with the correlation coefficients (r) >0.997. The detection limit (S/N = 3) was 0.11 nmol/g. Intraday and interday repeatability values expressed as relative standard deviation were 3.9 and 7.1%, respectively. The recovery rates ranged from 82.4 to 99.0%. The developed method was successfully applied for the analysis of total phthalate in seven edible oils.  相似文献   

6.
In this study, a MIL‐53(Al)‐packed column was successfully prepared and firstly applied to separate phthalate acid esters (butyl benzyl phthalate, di‐n‐butyl phthalate, diethyl phthalate, bis(2‐ethylhexyl) phthalate, and dimethyl phthalate). Their baseline separation could be achieved within 12 min with a mobile phase of methanol/H2O ratio at 92:8, and the temperature and flow rate was 40°C and 0.6 mL/min, respectively. The stacking effect and electrostatic force were the key factors in the separation. Moreover, there was a substantial linear relation between the peak height, peak area, and the analyte mass, and the relative standard deviations of retention time, peak height, peak area, and half peak width for five replicate separations of the analytes were within the ranges 0.31–0.88%, 0.72–1.52%, 1.33–1.53%, and 0.46–0.95%, respectively. The results of the calculation of the thermodynamics parameters showed that the separation of phthalate acid esters was controlled by both enthalpy change (ΔH) and entropy change (ΔS).  相似文献   

7.
We describe a highly sensitive micro‐solid‐phase extraction method for the pre‐concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high‐performance liquid chromatography with a variable‐wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2‐ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting‐out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3–200 μg/L. The limits of detection were 0.04–0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples.  相似文献   

8.
A microdispersive solid‐phase extraction method has been developed using multiwalled carbon nanotubes of 110–170 nm diameter and 5–9 μm length for the extraction of a group of nine phthalic acid esters (i.e., bis(2‐methoxyethyl) phthalate, bis‐2‐ethoxyethyl phthalate, dipropyl phthalate, butylbenzyl phthalate, bis‐2‐n‐butoxyethyl phthalate, bis‐isopentyl phthalate, bis‐n‐pentyl phthalate, dicyclohexyl phthalate, and di‐n‐octyl phthalate) from tap water as well as from different beverages commercialized in plastic bottles (mineral water, lemon‐ and apple‐flavored mineral water, and an isotonic drink). Determination was carried out by high‐performance liquid chromatography coupled to mass spectrometry. The extraction procedure was optimized following a step‐by‐step approach, being the optimum extraction conditions: 50 mL of each sample at pH 6.0, 80 mg of sorbent, and 25 mL of acetonitrile as elution solvent. To validate the methodology, matrix‐matched calibration and a recovery study were developed, obtaining determination coefficients >0.9906 and absolute recovery values between 70 and 117% (with relative standard deviations < 17%) in all cases. The limits of quantification of the method were between 0.173 and 1.45 μg/L. After the evaluation of the matrix effects, real samples were also analyzed, finding butylbenzyl phthalate in all samples (except in apple‐flavored mineral water), though at concentrations below its limit of quantification of the method.  相似文献   

9.
A quantified method for the determination of 17 phthalate esters (PAEs) in edible vegetable oil by GC‐MS with the pretreatment of acetonitrile extraction and silica/N‐(n‐Propyl)ethylenediamine‐mixed SPE column was established. By the quantification of internal standard of D4‐di(2‐ethylhexyl) phthalate, a good linearity range of related 17 PAEs was observed. The correlation coefficient was ranged at 0.994~1.000, and the standard lowest quantified level was 0.05~0.15 mg/L. The spiking recoveries of 17 PAEs were 78.3~108.9% with the relative standard deviations of 4.3~12.1% (n = 6). The method detection limits were 0.1~0.2 mg/kg. Meanwhile, PAEs were determined in 30 plastic buckets of edible vegetable oil from supermarkets in Hangzhou city of China. The survey of 30 oil samples showed di(2‐ethylhexyl) phthalate (DEHP) had the 100% (30/30) detection rate. The levels of diisobutyl phthalate with 86.7% (26:30), di‐n‐butyl phthalate (DBP) with 70% (21:30) and diethyl phthalate with 10% (3:30) were detected. It was worth note that DBP with 16.7% (5:30) samples and DEHP with 10% (3:30) samples were beyond the regular migrating limit, which indicated that more attention should be paid to the PAEs in oil with plastic package.  相似文献   

10.
Magnetic graphitic carbon nitride nanocomposites were successfully prepared in situ and used to develop a highly sensitive magnetic solid‐phase extraction method for the preconcentration of phthalate esters such as di‐n‐butyl phthalate, butyl phthalate, dihexyl phthalate, and di‐(2‐ethyl hexyl) phthalate from water. The adsorption and desorption of the phthalate esters on magnetic graphitic carbon nitride nanocomposites were investigated and the parameters affecting the partition of the phthalate esters, such as adsorption, desorption, recovery, were assessed. Under the optimized conditions, the proposed method showed excellent sensitivity with limits of detection (S/N = 3) in the range of 0.05–0.1 μg/L and precision in the range of 1.1–2.6% (n = 5). This method was successfully applied to the analysis of real water samples, and good spiked recoveries over the range of 79.4–99.4% were obtained. This research provides a possibility to apply this nanocomposite for adsorption, preconcentration, or even removal of various carbon‐based ring or hydrophobic pollutants.  相似文献   

11.
A method for the determination of 22 phthalate esters in polystyrene food‐contact materials has been established using ultraperformance convergence chromatography with tandem mass spectrometry. In this method, 22 phthalate esters were analyzed in <3.5 min on an ACQUITY Tours 1‐AA column by gradient elution. The mobile phase, the compensation solvent, the flow rate of mobile phase, column temperature, and automatic back pressure regulator pressure were optimized, respectively. There was a good linearity of 20 phthalate esters with a range of 0.05–10 mg/L, diisodecyl phthalate and diisononyl phthalate were 0.25–10 mg/L, and the correlation coefficients of all phthalates were higher than 0.99 and those of 16 phthalates were higher than 0.999. The limits of detection and the limits of quantification of 15 phthalates were 0.02 and 0.05 mg/kg, meanwhile diallyl phthalate, diisobutyl phthalate, dimethyl phthalate, di‐n‐butyl phthalate, and di(2‐ethylhexyl) phthalate were 0.05 and 0.10 mg/kg, and diisodecyl phthalate and diisononyl phthalate were 0.10 and 0.25 mg/kg. The spiked recoveries were in the range of 76.26–107.76%, and the relative standard deviations were in the range of 1.78–12.10%. Results support this method as an efficient alternative to apply for the simultaneous determination of 22 phthalate esters in common polystyrene food‐contact materials.  相似文献   

12.
In this study, magnetized MOF‐74 (Ni) was prepared using an ultrasound‐assisted synthesis method. This novel functional magnetic adsorbent was characterized using various techniques. Using the prepared material as adsorbents, a magnetic solid‐phase extraction method coupled with high‐performance liquid chromatography was proposed for determining four phthalate esters in Chinese liquor samples. The extraction parameters, including solution pH, adsorbent amount, extraction time, and eluent type and volume, were optimized. Under the optimized conditions, proposed method showed good linearity within the range of 1.53–200 μg/L for diphenyl phthalate, 2.03–200 μg/L for butyl benzyl phthalate, 7.02–200 μg/L for diamyl phthalate, and 6.03–200 μg/L for dicyclohexyl phthalate, with correlation coefficients > 0.9944, low limits of detection (0.46–2.10 μg/L, S/N = 3), and good extraction repeatability (relative standard deviations of 3.7%, n = 6). This method was successfully used to analyze phthalate esters in Chinese liquor samples with recoveries of 74.4–104.8%. Two phthalate esters were detected in two samples, both at concentrations that satisfied the Chinese national standard, indicating this method has practical application prospects. The extraction efficiency of this method was also compared with conventional solid‐phase extraction using commercial C18 cartridges. The results demonstrated that the proposed magnetic solid‐phase extraction is a simple, time‐saving, efficient, and low‐cost method.  相似文献   

13.
A new procedure is proposed for the analysis of migration test solutions obtained from plastic bottles used in the packaging of edible oils. Ultrasound‐assisted emulsification microextraction with ionic liquids was applied for the preconcentration of six phthalate esters: dimethylphthalate, diethylphthalate, di‐n‐butylphthalate, n‐butylbenzylphthalate, di‐2‐ethylhexylphthalate, and di‐n‐octylphthalate. The enriched ionic liquid was directly analyzed by gas chromatography and mass spectrometry using direct insert microvial thermal desorption. The different factors affecting the microextraction efficiency, such as volume of the extracting phase (30 μL of the ionic liquid) and ultrasound application time (25 s), and the thermal desorption step, such as desorption temperature and time, and gas flow rate, were studied. Under the selected conditions, detection limits for the analytes were in the 0.012–0.18 μg/L range, while recovery assays provided values ranging from 80 to 112%. The use of butyl benzoate as internal standard increased the reproducibility of the analytical procedure. When the release of the six phthalate esters from the tested plastic bottles to liquid simulants was monitored using the optimized procedure, analyte concentrations of between 1.0 and 273 μg/L were detected.  相似文献   

14.
A simple and rapid method using microextraction by packed sorbent coupled with gas chromatography and mass spectrometry has been developed for the analysis of five phthalates, namely, diethyl phthalate, benzyl‐n‐butyl phthalate, dicyclohexyl phthalate, di‐n‐butyl phthalate, and di‐n‐propyl phthalate, in cold drink and cosmetic samples. The various parameters that influence the microextraction by packed sorbent performance such as extraction cycle (extract–discard), type and amount of solvent, washing solvent, and pH have been studied. The optimal conditions of microextraction using C18 as the packed sorbent were 15 extraction cycles with water as washing solvent and 3 × 10 μL of ethyl acetate as the eluting solvent. Chromatographic separation was also optimized for injection temperature, flow rate, ion source, interface temperature, column temperature gradient and mass spectrometry was evaluated using the scan and selected ion monitoring data acquisition mode. Satisfactory results were obtained in terms of linearity with R2 >0.9992 within the established concentration range. The limit of detection was 0.003–0.015 ng/mL, and the limit of quantification was 0.009–0.049 ng/mL. The recoveries were in the range of 92.35–98.90% for cold drink, 88.23–169.20% for perfume, and 88.90–184.40% for cream. Analysis by microextraction by packed sorbent promises to be a rapid method for the determination of these phthalates in cold drink and cosmetic samples, reducing the amount of sample, solvent, time and cost.  相似文献   

15.
In the European Community, selected phthalic acid esters (PAE) are restricted in their use for the manufacture of toys and childcare articles to a content of 0.1% by weight. As PAE are mainly used as plasticisers for poly(vinyl chloride) (PVC), a rapid screening method for PVC samples with direct analysis in real time ionisation and single‐quadrupole mass spectrometry (DART‐MS) was developed. Using the ions for the protonated molecules, a limit of detection (LOD) of 0.05% was obtained for benzyl butyl phthalate, bis(2‐ethylhexyl) phthalate and diisononyl phthalate, while for dibutyl phthalate, di‐n‐octyl phthalate and diisodecyl phthalate the LOD was 0.1%. Validation of identification by the presence of ammonium adducts and characteristic fragment ions was possible to a content of ≥1% for all PAE, except for benzyl butyl phthalate (≥5%). Based on the fragment ions, bis(2‐ethylhexyl) phthalate could clearly be distinguished from di‐n‐octyl phthalate, if the concentrations were ≥5% and ≥1% at measured DART helium temperatures of 130 and 310°C, respectively. The complete analysis of one sample only took about 8 min. At the generally used gas temperature of 130°C, most toy and childcare samples did not sustain damage if their shape fitted into the DART source. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Liquid‐phase microextraction based on gemini‐based supramolecular solvent was successfully applied as a preconcentration step before gas chromatography with mass spectrometry. To eliminate the interferences of gemini surfactant, the analytes were back‐extracted into an immiscible organic solvent in the presence of ultrasonic sound waves. Three phthalate esters (di‐n‐butyl‐, butylbenzyl‐, bis(2‐ethylhexyl)‐, and di‐n‐octyl phthalatic esters) were used as target analytes. The effective parameters on extraction efficiency of the target analytes (i.e., the amount of surfactant and volume of propanol as major components making up the supramolecular solvent, ionic strength, hexane volume, and ultrasound time) were investigated and optimized by a one‐variable‐at‐a‐time method. Under the optimum conditions, the preconcentration factors of the analytes were in the range of 95–182. The linear dynamic range of 0.05–200.00 μg/L with a correlation of determination of (R 2) ≥ 0.9935 was obtained. The proposed method had an excellent limit of detection (S/N = 3) of 0.01 for di‐n‐octyl and 0.02 μg/L for butylbenzyl‐ and di‐n‐butyl‐phthalatic ester. Good relative recoveries in the range of 85.7–105.2% guaranteed the accuracy of the amount of phthalates distinguished in the nonspiked samples.  相似文献   

17.
A method based on ultrasound‐assisted liquid–liquid extraction and high‐performance liquid chromatography has been optimized for the determination of six polybrominated diphenyl ether congeners. The optimal condition relevant to the extraction was first investigated, more than 98.7 ± 0.7% recovery was achieved with dichloromethane as extractant, 5 min extraction time, and three cycles of ultrasound‐assisted liquid–liquid extraction. Then multiple function was employed to optimize polybrominated diphenyl ether detection conditions with overall resolution and chromatography signal area as the responses. The condition chosen in this experiment was methanol/water 93:7 v/v, flow rate 0.80 mL/min, column temperature 30.0°C. The optimized technique revealed good linearity (R2 > 0.9962 over a concentration range of 1–100 μg/L) and repeatability (relative standard deviation < 6.3%). Furthermore, the detection limit (S/N = 3) of the method were ranged from 0.02 to 0.13 μg/L and the quantification limit (S/N = 10) ranged from 0.07 to 0.35 μg/L. Finally, the proposed method was applied to spiked samples and satisfactory results were achieved. These results indicate that ultrasound‐assisted liquid–liquid extraction coupled with high‐performance liquid chromatography was effective to identify and quantify the complex polybrominated diphenyl ethers in effluent samples.  相似文献   

18.
Dispersive liquid–liquid microextraction method was developed for the determination of the amount of phthalate esters in bottled drinking water samples and dispersive liquid–liquid microextraction samples were analyzed by GC–MS. Various experimental conditions influencing the extraction were optimized. Under the optimized conditions, very good linearity was observed for all analytes in a range between 0.05 and 150 μg/L with coefficient of determination (R2) between 0.995 and 0.999. The LODs based on S/N = 3 were 0.005–0.22 μg/L. The reproducibility of dispersive liquid–liquid microextraction was evaluated. The RSDs were 1.3–5.2% (n = 3). The concentrations of phthalates were determined in bottled samples available in half shell. To understand the leaching profile of these phthalates from bottled water, bottles were exposed to direct sunlight during summer (temperature from 34–57°C) and sampled at different intervals. Result showed that the proposed dispersive liquid–liquid microextraction is suitable for rapid determination of phthalates in bottled water and di‐n‐butyl, butyl benzyl, and bis‐2‐ethylhexyl phthalate compounds leaching from bottles up to 36 h. Thereafter, degradation of phthalates was observed.  相似文献   

19.
A selective and low organic‐solvent‐consuming method of sample preparation combined with high‐performance liquid chromatography and tandem mass spectrometry is introduced for phthalate sum analysis in farmland soil. Sample treatment involves a one‐step hydrolysis of phthalates using methanol and alkaline and tetrabutylammonium bromide for 20 min at 80℃. Then, the resulting phthalic acid in the acidified hydrolysate is extracted using an octanol‐based supramolecular solvent without purification. Under optimized conditions, the correlation coefficients were 0.992–0.999 and standard errors (Sy/x) were 0.018–0.138 for calibration curves within the range of 50–2000 ng/mL. No obvious matrix effect occurred between the pure supramolecular solvent and soil extract. The recovery rates ranged from 91 to 107% with the relative standard deviation ranging from 0.5–7.3%. Intra‐ and interday repeatability, expressed as relative standard deviation, was less than 8.0 and 11.0%, respectively. The detected limit was 2.49 nmol/g, and the quantification limit was 3.64 nmol/g. Fifteen soil samples were analysed, and the background corrected phthalate sum ranged from 1.44 to 120 nmol/g.  相似文献   

20.
To extract, preconcentrate and determine the trace level of environmental contaminants, a novel mixed hemimicelles solid‐phase extraction (MHSPE) method based on mesoporous silica‐coated magnetic nanoparticles (Fe3O4/meso‐SiO2 NPs) as adsorbent was developed for extraction of phthalate esters from water samples. The Fe3O4/meso‐SiO2 NPs were synthesized by using a combination of hydrothermal method and sol‐gel method. The obtained Fe3O4/meso‐SiO2 NPs possessed a large surface area (570 m2/g), superparamagnetism, and uniform mesopores (2.8 nm). MHSPE parameters, such as the amount of surfactant, pH of sample, shaking and separation time, eluent and breakthrough volume that may influence the extraction of analytes greatly, were further investigated. Under the optimized conditions, the extraction was completed in 20 min and a concentration factor of 500 was achieved by extracting 250 mL water sample. Detection limits obtained of butyl‐benzyl phthalate (BBP), di‐n‐butyl phthalate (DnBP), di‐(2‐ethylhexyl) phthalate (DEHP) and di‐n‐cotyl phthalate (DnOP) were 12, 21, 12, and 32 ng/L, respectively. The proposed method exhibited high extraction efficiency and relatively short time for extracting the target compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号