首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Heteronuclear lanthanide‐based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare‐earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non‐toxic polyols. Bulk powders of the formula [Ln2?2xLn′2x(bdc)3 ? 4 H2O] (where H2bdc denotes 1,4‐benzene‐dicarboxylic acid, 0≤x≤1, and Ln and Ln′ denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light‐scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide‐based coordination polymers.  相似文献   

2.
The properties of supported non‐noble metal particles with a size of less than 1 nm are unknown because their synthesis is a challenge. A strategy has now been created to immobilize ultrafine non‐noble metal particles on supports using metal–organic frameworks (MOFs) as metal precursors. Ni/SiO2 and Co/SiO2 catalysts were synthesized with an average metal particle size of 0.9 nm. The metal nanoparticles were immobilized uniformly on the support with a metal loading of about 20 wt %. Interestingly, the ultrafine non‐noble metal particles exhibited very high activity for liquid‐phase hydrogenation of benzene to cyclohexane even at 80 °C, while Ni/SiO2 with larger Ni particles fabricated by a conventional method was not active under the same conditions.  相似文献   

3.
As various fullerene derivatives have been developed, it is necessary to explore their photophysical properties for potential use in photoelectronics and medicine. Here, we address the photophysical properties of newly synthesized water‐soluble fullerene‐based nanoparticles and polyhydroxylated fullerene as a representative water‐soluble fullerene derivative. They show broad emission band arising from a wide‐range of excitation energies. It is attributed to the optical transitions from disorder‐induced states, which decay in the nanosecond time range. We determine the kinetic properties of the singlet oxygen (1O2) luminescence generated by the fullerene nanoparticles and polyhydroxylated fullerene to consider the potential as photodynamic agents. Triplet state decay of the nanoparticles was longer than 1O2 lifetime in water. Singlet oxygen quantum yield of a series of the fullerene nanoparticles is comparably higher ranging from 0.15 to 0.2 than that of polyhydroxylated fullerene, which is about 0.06.  相似文献   

4.
The synthesis of hydrophilic lanthanide‐doped nanocrystals (Ln3+‐NCs) with molecular recognition ability for bioimaging currently remains a challenge. Herein, we present an effective strategy to circumvent this bottleneck by encapsulating Ln3+‐NCs in graphene oxide (NCs@GO). Monodisperse NCs@GO was prepared by optimizing GO size and core–shell structure of NaYF4:Yb,Er@NaYF4, thus combining the intense visible/near‐infrared II (NIR‐II) luminescence of NCs and the unique surface properties and biomedical functions of GO. Such nanostructures not only feature broad solvent dispersibility, efficient cell uptake, and excellent biocompatibility but also enable further modifications with various agents such as DNA, proteins, or nanoparticles without tedious procedures. Moreover, we demonstrate in proof‐of‐concept experiments that NCs@GO can realize simultaneous intracellular tracking and microRNA‐21 visualization, as well as highly sensitive in vivo tumor‐targeted NIR‐II imaging at 1525 nm.  相似文献   

5.
利用共沉淀方法制备出平均粒径为20nm的有机物8-羟基喹啉铝纳米粒子,8-羟基喹啉铝纳米粒子呈球形且粒度不随老化时间的增加而改变。本文研究了8-羟基喹啉铝纳米粒子的光致发光及基于8-羟基喹啉铝纳米粒子制作的电致发光器件的电致发光特性。8-羟基喹啉铝形成纳米粒子后,其光致发光及电致发光发射光谱的谱峰均出现蓝移。随着驱动电压的增加,器件中8-羟基喹啉铝纳米粒子的发射峰逐渐红移。在驱动电压为16伏时,8-羟基喹啉铝纳米粒子器件的最大亮度达600cd/m2,电流密度为150mA/cm-2时,器件的发光效率为0.19cd/A。基于8-羟基喹啉铝纳米粒子器件的发射光谱证实了AlQ3纳米粒子具有量子尺寸效应的存在,这为有机纳米电致发光器件的研究开辟了一条新的研究路线,同时也为那些传统的有机材料如有机分子晶体的基础研究探索出新的研究方向。  相似文献   

6.
Water‐soluble thioglycolic acid (TGA)‐capped CdTe quantum dots (QDs) were synthesized in aqueous medium, and then encapsulated in a silica nanosphere by copolymerization of the TGA‐capped CdTe conjugated with (3‐aminopropyl)triethoxysilane (APS‐CdTe conjugate), free (3‐aminopropyl)triethoxysilane (=3‐(triethoxysilyl)propan‐1‐amine; APS), and tetraethyl orthosilicate (TEOS) in a H2O‐in‐oil reverse microemulsion consisting of Triton X‐100, octanol, cyclohexane, and H2O in the presence of aqueous NH3 solution. The characterizations by transmission electron microscopy (TEM) and luminescence spectroscopy shows that the luminescent nanoparticles are monodisperse, spherical, and uniform in size, ca. 50 nm in diameter with a regular core–shell structure. In addition, primary amino groups directly introduced to the nanoparticle's surface by using free APS in the nanoparticle preparation enable the nanoparticles to be used easier as a biolabel. The effects of pH and metal cations on the luminescence of the nanoparticles also suggest that the new nanoparticles could be useful probes for luminescent sensings of pH and Cu2+ ion.  相似文献   

7.
The modification of flat semiconductor surfaces with nanoscale materials has been the subject of considerable interest. This paper provides detailed structural examinations of gold nanoparticles covalently immobilized onto hydrogen‐terminated silicon surfaces by a convenient thermal hydrosilylation to form Si? C bonds. Gold nanoparticles stabilized by ω‐alkene‐1‐thiols with different alkyl chain lengths (C3, C6, and C11), with average diameters of 2–3 nm and a narrow size distribution were used. The thermal hydrosilylation reactions of these nanoparticles with hydrogen‐terminated Si(111) surfaces were carried out in toluene at various conditions under N2. The obtained modified surfaces were observed by high‐resolution scanning electron microscopy (HR‐SEM). The obtained images indicate considerable changes in morphology with reaction time, reaction temperature, as well as the length of the stabilizing ω‐alkene‐1‐thiol molecules. These surfaces are stable and can be stored under ambient conditions for several weeks without measurable decomposition. It was also found that the aggregation of immobilized particles on a silicon surface occurred at high temperature (> 100 °C). Precise XPS measurements of modified surfaces were carried out by using a Au–S ligand‐exchange technique. The spectrum clearly showed the existence of Si? C bonds. Cross‐sectional HR‐TEM images also directly indicate that the particles were covalently attached to the silicon surface through Si? C bonds.  相似文献   

8.
Water‐dispersible and luminescent gadolinium oxide (GO) nanoparticles (NPs) were designed and synthesized for potential dual‐modal biological imaging. They were obtained by capping gadolinium oxide nanoparticles with a fluorescent glycol‐based conjugated carboxylate (H L ). The obtained nanoparticles (GO‐ L ) show long‐term colloidal stability and intense blue fluorescence. In addition, L can sensitize the luminescence of europium(III) through the so‐called antenna effect. Thus, to extend the spectral ranges of emission, europium was introduced into L‐ modified gadolinium oxide nanoparticles. The obtained EuIII‐doped particles (Eu:GO‐ L ) can provide visible red emission, which is more intensive than that without L capping. The average diameter of the monodisperse modified oxide cores is about 4 nm. The average hydrodynamic diameter of the L ‐modified nanoparticles was estimated to be about 13 nm. The nanoparticles show effective longitudinal water proton relaxivity. The relaxivity values obtained for GO‐ L and Eu:GO‐ L were r1=6.4 and 6.3 s?1 mM ?1 with r2/r1 ratios close to unity at 1.4 T. Longitudinal proton relaxivities of these nanoparticles are higher than those of positive contrast agents based on gadolinium complexes such as Gd‐DOTA, which are commonly used for clinical magnetic resonance imaging. Moreover, these particles are suitable for cellular imaging and show good biocompatibility.  相似文献   

9.
The influence of adding alfa‐Al2O3 nanoparticles with different concentrations into Watt's bath under the application of ultrasound during electrodeposition was investigated by means of electrochemical impedance spectroscopy (EIS) in the galvanostatic mode. The characteristics of the double layer during nickel deposition were affected by the existence of Al2O3 nanoparticles in the electrolyte. In this study, the results of the impedance were correlated with the layer properties, e.g. the mean grain size, the incorporation of particles in the deposit and the strengthening performance. It became obvious that there is a good relationship between the EIS data and layer properties, which makes the impedance spectroscopy a reliable tool for predicting the properties in dispersion coatings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Ultra‐small ZnGa2O4:Cr3+ nanoparticles (6 nm) that exhibit near‐infrared (NIR) persistent luminescence properties are synthesized by using a non‐aqueous sol–gel method assisted by microwave irradiation. The nanoparticles are pegylated, leading to highly stable dispersions under physiological conditions. Preliminary in vivo studies show the high potential for these ultra‐small ZnGa2O4:Cr3+ nanoparticles to be used as in vivo optical nanotools as they emit without the need for in situ excitation and, thus, avoid the autofluorescence of tissues.  相似文献   

11.
Targeted drug delivery is a promising approach to overcome the limitations of classical chemotherapy. In this respect, Imatinib‐loaded chitosan‐modified magnetic nanoparticles were prepared as a pH sensitive system for targeted delivery of drug to tumor sites by applying a magnetic field. The proposed magnetic nanoparticles were prepared through modification of magnetic Fe3O4 nanoparticles with chitosan and Imatinib. The structural, morphological and physicochemical properties of the synthesized nanoparticles were determined by different analytical techniques including energy‐dispersive X‐ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), Fourier‐transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HR‐TEM), vibrating sample magnetometry (VSM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). UV/visible spectrophotometry was used to measure the Imatinib contents. Thermal stability of the prepared particles was investigated and their efficiency of drug loading and release profile were evaluated. The results demonstrated that Fe3O4@CS acts as a pH responsive nanocarrier in releasing the loaded Imatinib molecules. Furthermore, the Fe3O4@CS/Imatinib nanoparticles displayed cytotoxic effect against MCF‐7 breast cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy.  相似文献   

12.
Palladium nanoparticles have been immobilized into an amino‐functionalized metal–organic framework (MOF), MIL‐101Cr‐NH2, to form Pd@MIL‐101Cr‐NH2. Four materials with different loadings of palladium have been prepared (denoted as 4‐, 8‐, 12‐, and 16 wt %Pd@MIL‐101Cr‐NH2). The effects of catalyst loading and the size and distribution of the Pd nanoparticles on the catalytic performance have been studied. The catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier‐transform infrared (FTIR) spectroscopy, powder X‐ray diffraction (PXRD), N2‐sorption isotherms, elemental analysis, and thermogravimetric analysis (TGA). To better characterize the palladium nanoparticles and their distribution in MIL‐101Cr‐NH2, electron tomography was employed to reconstruct the 3D volume of 8 wt %Pd@MIL‐101Cr‐NH2 particles. The pair distribution functions (PDFs) of the samples were extracted from total scattering experiments using high‐energy X‐rays (60 keV). The catalytic activity of the four MOF materials with different loadings of palladium nanoparticles was studied in the Suzuki–Miyaura cross‐coupling reaction. The best catalytic performance was obtained with the MOF that contained 8 wt % palladium nanoparticles. The metallic palladium nanoparticles were homogeneously distributed, with an average size of 2.6 nm. Excellent yields were obtained for a wide scope of substrates under remarkably mild conditions (water, aerobic conditions, room temperature, catalyst loading as low as 0.15 mol %). The material can be recycled at least 10 times without alteration of its catalytic properties.  相似文献   

13.
A reverse nanoemulsion technique was used for the elaboration of [Fe(pz){Ni(CN)4}] nanoparticles. Low‐temperature micellar exchange made it possible to elaborate ultra‐small nanoparticles with sizes down to 2 nm. When decreasing the size of the particles from 110 to 12 nm the spin transition shifts to lower temperatures, becomes gradual, and the hysteresis shrinks. On the other hand, a re‐opening of the hysteresis was observed for smaller (2 nm) particles. A detailed 57Fe Mössbauer spectroscopy analysis was used to correlate this unusual phenomenon to the modification of the stiffness of the nanoparticles thanks to the determination of their Debye temperature.  相似文献   

14.
Nowadays, introducing self‐cleaning properties on various fabrics under daylight irradiation for automotive and upholstery application is in a central point of research. This can be achieved by application of metal‐doped TiO2 nano particles on the textile fabrics. Here, alkali hydrolysis of polyester fabric has been carried out along with synthesis of Cu2O/TiO2 nanoparticles in a single‐step process by using sonochemical technique. CuSO4.5H2O was used as a source of copper in the presence of glucose as reducing and stabilizing agent. Moreover, central composite design based on response surface methodology (RSM) was used to determine the role of variables (CuSO4.5H2O, glucose and pH) and their effects on the self‐cleaning properties and weight of the fabric. The self‐cleaning property was investigated by degradation of Methylene blue on the surface of the treated fabrics under daylight. Further, the tensile properties, colorimetric measurement, and washing fastness of the treated fabric produced in the optimum conditions were investigated. The morphology of Cu2O/TiO2 nanoparticles was examined using X‐ray diffraction and field emission scanning electron microscopy (FESEM). The new polyester fabric obtained through in situ synthesis of Cu2O/TiO2 nanoparticles can be used as a desirable stable fabric with high tensile strength and visible‐light self‐cleaning properties.  相似文献   

15.
A multi-step process was used for preparation of three-dimensionally ordered macroporous (3DOM) SiO2, in which fully accessible Ag nanoparticles are incorporated. The method involves the processes of assembly of polystyrene colloidal crystal, preparation of 3DOM SiO2, and incorporation of Ag nanoparticles within 3DOM SiO2 through in situ Tollens‘ reaction. XRD, SEM and EDXS determination show that the Ag particles deposited on the macroporous walls in nano dimension. The results indicate that lower concentration of silver ammoniate and for-maldehyde in the solution is favorable for forming a very narrow size distribution and uniform shape of nanoparticles. However, the higher the concentration of the solution and the more the loading times, the larger the possibility to form un-uniform particles. Ag nanoparticles can be sintered into larger and spheral particles by calcination at 600℃, but can resist sintering owing to their high dispersivity when loading amount is small. The study provided a simple approach to tailor Ag/3DOM SiO2 composite materials with desired morphology and size of Ag particles within the macropores.  相似文献   

16.
The catalytic activity of l ‐arginine‐coated nano‐Fe3O4 particles (Fe3O4@l ‐arginine) proves they are a novel magnetic catalyst without the use of heat and reflux for the synthesis of 1,3‐diaryl‐2‐N‐azaphenalene derivatives and n‐acyl‐1,3‐diaryl‐2‐N‐azaphenylene derivatives in a one‐pot pseudo‐five‐component condensation reaction of compounds of 2,7‐naphthalene diol, aldehydes, and ammonia derivatives (ammonium acetate or ammonium hydrogen phosphate) and solvent (water and alcohol) with high yield and short reaction times, economical, and simple workup. The structure and magnetic properties of the obtained nanoparticles were characterized via Fourier transform infrared spectroscopy (IR) and field emission scanning electron microscopy (FE‐SEM). The results demonstrated that the average size of the synthesized magnetite nanoparticles is about 21 nm. In addition, the heterogeneous catalyst can be easily recovered magnetically and can be reused for further runs without significant loss of its catalytic activity.  相似文献   

17.
A magnetically recoverable and efficient demulsifier is shown to demulsify surfactant‐stable water‐in‐oil emulsions rapidly. Ferroferric oxide (Fe3O4) particles are firstly coated by amorphous silicon dioxide (SiO2), and further functionalized with a commercial dodecyltrimethoxysilane solution (KH‐1231). Owing to their paramagnetic properties, the demulsifier particles can be easily recovered with a magnet. Upon addition of demulsifier to emulsions and subsequent sonification, the supernatant becomes completely transparent and no droplets are observed in the micrographs. It was also demonstrated that this demulsifier is effective for emulsions prepared with a variety of oils. Moreover, magnetically recovered demulsifier can be recycled after simple treatment without any decline of efficiency. This work presents a feasible approach for demulsifying water‐in‐oil emulsions, and has potential value in industry.  相似文献   

18.
Owning to their anion‐exchange properties, titanium and zirconium dioxides are widely used in phosphopeptide enrichment and purification protocols. The physical and chemical characteristics of the particles can significantly influence the loading capacity, the capture efficiency and phosphopeptide specificity and thus the outcome of the analyses. Although there are a number of protocols and commercial kits available for phosphopeptide purification, little data are found in the literature on the choice of the enrichment media. Here, we studied the influence of particle size on the affinity capture of phosphopeptides by TiO2 and ZrO2. Bovine milk casein derived phosphopeptides were enriched by micro and nanoparticles using a single‐tube in‐solution protocol at different peptide‐to‐beads ratio ranging from 1 : 1 to 1 : 200. Unsupervised hierarchical cluster analysis based on the whole set of Matrix Assisted Laser Desorption/Ionization time‐of‐flight mass spectra of the phosphopeptide enriched samples revealed 62 clustered peptide peaks and shows that nanoparticles have considerably higher enrichment capacity than bulk microparticles. Moreover, ZrO2 particles have higher enrichment capacity than TiO2. The selectivity and specificity of the enrichment was studied by monitoring the ion abundances of monophosphorylated, multiphosphorylated and non‐phosphorylated casein‐derived peptide peaks at different peptide‐to‐beads ratios. Comparison of the resulting plots enabled the determination of the optimal peptide‐to‐beads ratios for the different beads studied and showed that nano‐TiO2 have higher selectivity for phosphopeptides than nano‐ZrO2 particles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
MoS2 particles with different size distributions were prepared by simple ultrasonication of bulk MoS2 followed by gradient centrifugation. Relative to the inert microscale MoS2, nanoscale MoS2 showed significantly improved catalytic activity toward the oxygen‐reduction reaction (ORR) and hydrogen‐evolution reaction (HER). The decrease in particle size was accompanied by an increase in catalytic activity. Particles with a size of around 2 nm exhibited the best dual ORR and HER performance with a four‐electron ORR process and an HER onset potential of ?0.16 V versus the standard hydrogen electrode (SHE). This is the first investigation on the size‐dependent effect of the ORR activity of MoS2, and a four‐electron transfer route was found. The exposed abundant Mo edges of the MoS2 nanoparticles were proven to be responsible for the high ORR catalytic activity, whereas the origin of the improved HER activity of the nanoparticles was attributed to the plentiful exposed S edges. This newly discovered process provides a simple protocol to produce inexpensive highly active MoS2 catalysts that could easily be scaled up. Hence, it opens up possibilities for wide applications of MoS2 nanoparticles in the fields of energy conversion and storage.  相似文献   

20.
Sensitive and rapid detection of multiple analytes and the collection of components from complex samples are important in fields ranging from bioassays/chemical assays, clinical diagnosis, to environmental monitoring. A convenient strategy for creating magnetically encoded luminescent CdTe@SiO2@n Fe3O4 composite nanoparticles, by using a layer‐by‐layer self‐assembly approach based on electrostatic interactions, is described. Silica‐coated CdTe quantum dots (CdTe@SiO2) serve as core templates for the deposition of alternating layers of Fe3O4 magnetic nanoparticles and poly(dimethyldiallyl ammonium chloride), to construct CdTe@SiO2@n Fe3O4 (n=1, 2, 3, …?) composite nanoparticles with a defined number (n) of Fe3O4 layers. Composite nanoparticles were characterized by zeta‐potential analysis, fluorescence spectroscopy, vibrating sample magnetometry, and transmission electron microscopy, which showed that the CdTe@SiO2@n Fe3O4 composite nanoparticles exhibited excellent luminescence properties coupled with well‐defined magnetic responses. To demonstrate the utility of these magnetically encoded nanoparticles for near‐simultaneous detection and separation of multiple components from complex samples, three different fluorescently labeled IgG proteins, as model targets, were identified and collected from a mixture by using the CdTe@SiO2@n Fe3O4 nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号