首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
A graphene-modified glassy carbon electrode was obtained via drop-casting method and applied to the simultaneous detection of epinephrine, uric acid, and ascorbic acid by cyclic voltammetry in a phosphate buffer solution (pH 3.0). The oxidation potentials of epinephrine, uric acid, and ascorbic acid were 0.484, 0.650, and 0.184 V at the graphene-modified glassy carbon electrode, respectively. The peak separation between epinephrine Pand uric acid, epinephrine and ascorbic acid, and uric acid and ascorbic acid was about 166, 300, and 466 mV, respectively. So, this graphene-modified electrode can be used for simultaneous determination of each component in a mixture.  相似文献   

2.
采用电氧化法制备了一种新型γ-氨基丁酸(ABA)修饰的玻碳电极.X射线光电子能谱(XPS)和循环伏安法研究表明,ABA以单分子层状态以C—N键牢固地共价键合在电极表面.该修饰电极对多巴胺(DA)、尿酸(UA)和抗坏血酸(AA)都具有良好的电化学催化特性.在pH=7.0磷酸缓冲溶液中,DA,UA和AA分别于0.45,0.25和0.07V(vs.Ag/AgCl)有一个良好的、独立的阳极方波伏安峰,表明此修饰电极可用于这3种物质的同时测定.与DA,UA和AA的方波伏安峰电流呈线性关系的浓度范围分别为4.0~400,2.0~500和1.0~600μmol/L,检测限(3δ)分别为1.6,1.2和0.8μmol/L.该修饰电极具有良好的灵敏度、选择性和稳定性,并具有抗污染能力.  相似文献   

3.
制备了一种新颖的Nation-离子液体一多壁碳纳米管复合膜修饰电极,并研究了抗坏血酸(AA)、多巴胺(DA)和尿酸(uA)在该修饰电极上的电化学行为.该修饰电极结合了多壁碳纳米管良好的导电性、离子液体优良的催化性能及Nation的高选择性等优点,对AA、DA和UA的氧化具有很好的催化和分离效果,实现了AA、DA和UA的同时测定.在三者共存体系中,AA和DA、DA和UA的氧化峰电位差分别为148和167mV.对AA、DA和UA的同时检测,线性范围分别为5-3200、1~1100和1-300gmol/L,检出限分别为1.66、0.33和0.33gmol/L.该修饰电极选择性好、稳定性高、重现性好,有望用于实际样品中AA、DA和UA的同时检测.  相似文献   

4.
Zen JM  Hsu CT 《Talanta》1998,46(6):1363-1369
A square-wave voltammetric method together with Nafion®-coated carbon paste electrodes were used for the selective determination of uric acid in the presence of a high concentration of ascorbic acid. Since the oxidation potential of uric acid is about 200 mV more positive than that of ascorbic acid at the Nafion®-coated carbon paste electrode, the selectivity can be greatly improved simply by applying an electrolysis potential of +0.4 V vs. Ag/AgCl where only ascorbic acid is oxidised. The acceptable tolerance of ascorbic acid concentration for the determination of uric acid is as high as 1.5 mM. With 30 s of electrolysis time, a linear calibration curve is obtained over the 0–50 μM range in 0.05 M citrate buffer solution, pH 4.0, with slope (μA/μM) and correlation coefficient of 0.34 and 0.9984, respectively. The detection limit (3σ) is 0.25 μM. The practical analytical utility is illustrated by selective measurements of uric acid in human urine without any preliminary treatment.  相似文献   

5.
《Analytical letters》2012,45(10):1525-1536
Magnetic chitosan microspheres (MCMS) and thionine were incorporated in a modified electrode for the simultaneous sensitive determination of dopamine (DA) and uric acid (UA). Due to the unique properties of the MCMS and the electron mediation of thionine, this modified electrode showed excellent electrocatalytic oxidation toward dopamine and uric acid with a large separation of peak potentials and a significant enhancement of peak currents. However, the electrochemical behavior of ascorbic acid may be depressed at the modified electrode. Differential pulse voltammetry was used for the simultaneous sensitive determination of dopamine and uric acid in the presence of excess ascorbic acid at this modified electrode. The current responses showed excellent linear relationships in the range of 2–30 µM and 9–100 µM for dopamine and uric acid, respectively. The detection limits were estimated to be 0.5 µM and 2.3 µM for dopamine and uric acid, respectively. In addition, this modified electrode showed excellent repeatability, good stability, and satisfactory reliability, thus indicating potential for the practical applications.  相似文献   

6.
A sensitive and selective electrochemical method for the determination of dopamine using an Evans Blue polymer film modified on glassy carbon electrode was developed. The Evans blue polymer film modified electrode shows excellent electrocatalytic activity toward the oxidation of dopamine in phosphate buffer solution (pH 4.5). The linear range of 1.0 x 10(-6)-3.0 x 10(-5) M and detection limit of 2.5 x 10(-7) M were observed in pH 4.5 phosphate buffer solutions. The interference studies showed that the modified electrode exhibits excellent selectivity in the presence of large excess of ascorbic acid and uric acid. The separation of the oxidation peak potentials for dopamine-ascorbic acid and dopamine-uric acid were about 182 mV and 180 mV, respectively. The differences are large enough to determine AA, DA and UA individually and simultaneously. This work provides a simple and easy approach to selectively detect dopamine in the presence of ascorbic acid and uric acid in physiological samples.  相似文献   

7.
A promising electrochemical sensor based nickel‐carbon nanotube (Ni‐CNT) modified on glassy carbon (GC) electrode had been developed and the properties of the modified electrode were characterized by multispectroscopic analysis. The fabricated sensor (GC/Ni‐CNT) electrode was utilized to determine the catecholamines such as epinephrine and dopamine simultaneously. Differential pulse voltammetry and amperometry were used to verify the electrochemical behavior of the studied compounds. The GC/Ni‐CNT based amperometric sensor showed a wide linear range and low detection limit with high analytical sensitivity of 8.31 and 6.61 μA μM?1 for EP and DA, respectively which demonstrates better characteristics compared to other electrodes reported in the literature. Further, no significant change in amperometric current response was observed in presence of biological interference species such as glucose, cysteine, citric acid, uric acid and ascorbic acid in the detection of EP and DA. The utility of this GC/Ni‐CNT electrode was well established for the determination of EP and DA in human urine samples.  相似文献   

8.
Nanocrystalline graphite-like pyrolytic carbon film (PCF) electrode fabricated by a non-catalytic chemical vapor deposition (CVD) process was used for the simultaneous electrochemical sensing of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrode was studied with respect to changes in electrocatalytic activity caused by a simple and fast electrochemical pretreatment. The anodized electrode exhibited excellent performance compared to many chemically modified electrodes in terms of detection limit, linear dynamic range, and sensitivity. Differential pulse voltammetry (DPV) was used for the simultaneous determination of ternary mixtures of DA, AA, and UA. Under optimum conditions, the detection limits were 2.9 μM for AA, 0.04 μM for DA, and 0.03 μM for UA with sensitivities of 0.078, 5.345, and 6.192 A M−1, respectively. The peak separation was 219 mV between AA and DA and 150 mV between DA and UA. No electrode fouling was observed and good reproducibility was obtained in all the experiments. The sensor was successfully applied for the assay of DA in an injectable drug and UA in human urine by using standard addition method.  相似文献   

9.
A chemically modified carbon paste electrode (CPE), consisting of 2,2''-[(1E)-(1,2-phenylenebis(azanylylidene)] bis(methanylylidene)]bis(benzene-1,4-diol) (PBD) and multiwalled carbon nanotubes (CNTs), was used to study the electrocatalytic oxidation of dopamine using cyclic voltammetry, chronoamperometry, and differential pulse voltammetry (DPV). First, the electrochemical behavior of the modified electrode was investigated in buffer solution. Then the diffusion coefficient, electrocatalytic rate constant, and electron-transfer coefficient for dopamine oxidation at the surface of the PBD-modified CNT paste electrode were determined using electrochemical approaches. It was found that under optimum conditions (pH = 7.0), the oxidation of dopamine at the surface of such an electrode occurred at about 200 mV, lower than that of an unmodified CPE. DPV of dopamine at the modified electrode exhibited two linear dynamic ranges, with a detection limit of 1.0 μmol/L. Finally, DPV was used successfully for the simultaneous determination of dopamine, uric acid, and folic acid at the modified electrode, and detection limits of 1.0, 1.2, and 2.7 μmol/L were obtained for dopamine, uric acid, and folic acid, respectively. This method was also used for the determination of dopamine in a pharmaceutical preparation using the standard addition method.  相似文献   

10.
A facile approach for the synthesis of gold nanoparticle-loaded carbon nanofiber(Au/CNF) composites was developed. When applied to electrochemistry, these composites showed attractive performances such as high conductivity and facile electron transfer kinetics. Under physiological conditions, the Au/CNF composite modified electrode exhibits highly electrocatalytic activity for the oxidation of dopamine, ascorbic acid and uric acid. Owing to the good selectivity for the simultaneous detection of these three ...  相似文献   

11.
We are presenting an electrochemical sensor for the simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of even high concentrations of ascorbic acid (AA). It based on a glassy carbon electrode modified with an electroactive film of polymerized dibromofluorescein. The electrochemical behaviors of DA and UA were studied by cyclic voltammetry using the modified electrode. It exhibits excellent electrocatalytic activity towards the oxidation of the two analytes. Most notably, the oxidation potentials differ by 180 and 200?mV between AA-DA and DA-UA, respectively. Thus, excellent selectivity towards the oxidation of DA and UA in the presence of even high concentrations of AA is accomplished. Under the optimum conditions, the anodic peak currents are linearly related to the concentrations of DA and UA in the range from 0.2 to 200?μmol?L-1 and from 1.0 to 250?μmol?L-1, respectively. The detection limits for DA and UA are 0.03?μmol?L-1 and 0.2?μmol?L-1, respectively (at an S/N of 3). The method has good selectivity and sensitivity and was successfully applied to the simultaneous determination of DA and UA in spiked human serum.
Figure
A novel electrochemical sensor based on poly (dibromofluorescein) film modified glassy carbon electrode has been fabricated and used for the simultaneous determination of dopamine and uric acid in the presence of high concentration of ascorbic acid with good selectivity and sensitivity.  相似文献   

12.
The role of oxygen functionalities and edge plane sites on disposable screen-printed carbon electrodes (SPCE) was evaluated for simultaneous determination of dopamine, uric acid and ascorbic acid in this study. Both electrochemically preanodized and oxygen plasma treated SPCEs were adopted for the purpose of partially differentiating these two effects. Raman and XPS analyses verify that different treatment can indeed induce different surface characteristics. The electrocatalytic activity thereby increases by the substantial increase in surface bound carbon–oxygen functional groups and/or the generation of edge plane sites through surface reorientation. Possible mechanism is proposed to explain the voltammetric behavior. The peaks for dopamine, uric acid and ascorbic acid are especially well-resolved from each other at the electrochemically preanodized SPCE and simultaneous detection at neutral pH can thus be obtained by this simple approach.  相似文献   

13.
研究了聚磺基水杨酸/多壁碳纳米管修饰玻碳电极的制备及多巴胺在此修饰电极上的电化学行为, 讨论了修饰条件、扫速、溶液 pH 以及抗坏血酸的干扰对多巴胺在这种复合物电极上响应的影响. 在 pH 7.4 磷酸盐缓冲溶液中, 在1.0×10-3 mol/L 抗坏血酸共存的条件下, 多巴胺氧化峰电流与其浓度在 5×10-7~10-4 mol/L 范围内分段呈线性关系, 检出限为 1.0×10-7 mol/L. 结果表明: 聚磺基水杨酸/多壁碳纳米管修饰电极结合了多壁碳纳米管灵敏度高和聚磺基水杨酸选择性好的优点, 可用于抗坏血酸共存条件下多巴胺的测定.  相似文献   

14.
In this work, composite microelectrodes from poly(3,4‐ethylenedioxythiophene) (PEDOT) and carbon nanotubes (CNT) are characterized as electrochemical sensing material for neurotransmitters. Dopamine can be detected using square wave voltammetry at these microelectrodes. The CNTs improve the sensitivity by a factor of two. In addition, the selectivity towards dopamine in the presence of ascorbic acid and uric acid was examined. While both electrodes, PEDOT and PEDOT‐CNT are able to detect all measured concentrations of dopamine in the presence of uric acid, small concentrations of dopamine and ascorbic acid are only distinguishable at PEDOT‐CNT electrodes. Changing the pH has a strong influence on the selectivity. Moreover, it is possible to detect concentrations as low as 1 µM dopamine in complex cell culture medium. Finally, other catecholamines like serotonin, epinephrine, norepinephrine and L ‐dopa are also electrochemically detectable at PEDOT‐CNT microelectrodes.  相似文献   

15.
A modified electrode was fabricated by electrochemically deposition of Pt nanoparticles on the multiwall carbon nanotube covered glassy carbon electrode (Pt nanoparticles decorated MWCNT/GCE). A higher catalytic activity was obtained to electrocatalytic oxidation of ascorbic acid, dopamine, and uric acid due to the enhanced peak current and well‐defined peak separations compared with both, bare and MWCNT/GCE. The electrode surfaces were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). Individual and simultaneous determination of AA, DA, and UA were studied by differential pulse voltammetry. The detection limits were individually calculated for ascorbic acid, dopamine, and uric acid as being 1.9×10?5 M, 2.78×10?8 M, and 3.2×10?8 M, respectively. In simultaneous determination, LODs were calculated for AA, DA, and UA, as of 2×10?5 M, 4.83×10?8 M, and 3.5×10?7 M, respectively.  相似文献   

16.
In this study, a nanocomposite of 3, 4, 9, 10‐perylenetetracarboxylic acid and L‐cysteine (PTCA‐Cys) with satisfactory water‐solubility and film‐forming ability was prepared and worked as substrate for modifying the glassy carbon electrode. Then, gold nanoparticles (AuNPs) were immobilized to achieve a PTCA‐Cys‐AuNPs modified electrode which provided more reaction positions on the sensor. Scanning electron microscopy, transmission electron microscopy, cyclic voltammetry and different pulse voltammetry were employed to characterize the assembly process of the sensor. The constructed sensor displayed desirable sensitivity, selectivity and stability towards the simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Under the optimal experimental conditions, the oxidation peaks of AA, DA and UA appeared at 64, 240 and 376 mV, respectively. The corresponding linear response ranges were 3.2–435, 0.04–100 and 0.80–297 μM, and the detection limits were 1.1, 0.010 and 0.27 μM (S/N=3), respectively.  相似文献   

17.
A sensitive and selective electrochemical method was developed for simultaneous determination of uric acid (UA), xanthine (XA) and hypoxanthine (HX) based on a poly (pyrocatechol violet)/carboxyl functionalized multi-walled carbon nanotubes composite film modified electrode. The preparation and basic electrochemical performance of the novel composite film modified glassy carbon electrode were investigated in details. The electrochemical behaviors of UA, XA and HX at the modified electrode were studied by cyclic voltammetry. The results showed that this new electrochemical sensor exhibited excellent electrocatalytic activity towards the oxidation of the three analytes. The mechanism of catalysis was discussed. The anodic peaks of the three species were well defined with lowered oxidation potential and enhanced oxidation peak currents, so the modified electrode was used for simultaneous voltammetric measurement of UA, XA and HX by differential pulse voltammetry. Under the optimum conditions, the detection limits were 0.16 μmol L(-1) for UA, 0.05 μmol L(-1) for XA and 0.20 μmol L(-1) for HX, respectively (S/N of 3). The proposed method has been successfully applied to simultaneous determination of UA, XA and HX in human serum samples.  相似文献   

18.
The performance of carbon nanotubes paste electrodes (CNTPE) prepared by dispersion of multi-wall carbon nanotubes (MWNT) within mineral oil is described. The resulting electrode shows an excellent electrocatalytic activity toward ascorbic acid, uric acid, dopamine, 3,4-dihydroxyphenylacetic acid (dopac) and hydrogen peroxide. These properties permit an important decrease in the overvoltage for the oxidation of ascorbic acid (230 mV), uric acid (160 mV) and hydrogen peroxide (300 mV) as well as a dramatic improvement in the reversibility of the redox behavior of dopamine and dopac, in comparison with the classical carbon (graphite) paste electrodes (CPE). The substantial decrease in the overvoltage of the hydrogen peroxide reduction (400 mV) associated with a successful incorporation of glucose oxidase (GOx) into the composite material, allow the development of a highly selective and sensitive glucose biosensor without using any metal, redox mediator or anti-interference membrane. No interference was observed at −0.100 V even for large excess of ascorbic acid, uric acid and acetaminophen. A linear response up to 30 mM (5.40 g l−1) glucose with a detection limit of 0.6 mM (0.11 g l−1) were obtained with the CNTPE modified with 10% w/w GOx. Such an excellent performance of CNTPE toward hydrogen peroxide, represents a very good alternative for developing other enzymatic biosensors.  相似文献   

19.
Normetanephrine is a marker for pheochromocytoma, a rare catecholamine-secreting and neuroendocrine tumor, that arises from sympathetic and parasympathetic paraganglia. In this work, a novel carbon/chitosan electrode paste was used for sensitive voltammetric determination of normetanephrine and dopamine in the presence of ascorbic acid and uric acid. The modified electrode has shown an increase in the effective area of up to 68%, well-separated oxidation peaks, and an excellent electrocatalytic activity. The electrochemical response characteristics were investigated by cyclic and differential pulse voltammetry. Interestingly, high sensitivity and selectivity in the linear range of normetanephrine, dopamine, ascorbic acid, and uric acid concentrations were observed. The present method was applied in the urine sample and satisfactory results were obtained showing that this electrode is very suitable in pharmaceutical and clinical preparations.  相似文献   

20.
A glassy carbon electrode modified with poly(alizarin red)/electrodeposited graphene (PAR/EGR) composite film was prepared and applied to detect ciprofloxacin (CPFX) in the presence of ascorbic, uric acid and dopamine. The morphology and interface property of PAR/EGR films were examined by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrocatalytic oxidation of CPFX on AR/EGR was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The linearity ranged from 4 × 10−8 to 1.2 × 10−4 M with a detection limit (S/N = 3) of 0.01 μM. The modified electrode could be applied to the individual determination of CPFX as well as the simultaneous determination of CPFX, ascorbic acid, uric acid and dopamine. This method proved to be a simple, selective and rapid way to determine CPFX in pharmaceutical preparation and biological media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号