首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
采用对称性破损态方法结合密度泛函理论,选用反铁磁双核配合物[Cu2(MMBPT)2Cl4(H2O)2.5](MMBPT=3-甲基-4-对甲基苯基-5-(2-吡啶)-1,2,4-三唑)作为研究对象,通过与实验数据相比较,探讨了不同密度泛函方法与基组对计算铜配合物交换耦合常数的准确度.结果表明,4种混合密度泛函DFT(B3LYP,B3P86,B3PW91和PBE0)的计算结果都能和实验所观察到的值-31cm-1符号一致,但只有B3PW91方法得到的结果和实验结果吻合程度最好,同时采用方法B3PW91方法计算所得的交换耦合常数Jab对基组的依赖性较大.研究表明,2个Cu(Ⅱ)离子之间弱的反铁磁相互作用主要源于单占据分子轨道SOMOs小的能量劈裂.  相似文献   

2.
采用密度泛函理论结合对称性破损态方法(DFT-BS),以双亚甲胺席夫碱为配体的双核吲哚铜配合物[Cu2L(AZ)(DMSO)](L=双甲亚胺三阴离子,由1-苯基-3-甲基-4-甲酰吡唑和1,3-二氨-2-丙醇衍生而成;AZ=7-氮杂吲哚阴离子)作为研究对象,通过与实验数据相比较,讨论了在不同密度泛函方法与基组对金属铜配物交换耦合常数的影响.结果表明,4种混合密度泛函方法(B3PW91,B3LYP,B3P86和PBE)及3种单一密度泛函(BPW91,BLYP和BP86)的计算结果都与实验值106cm-1有着相同的符号,但使用单一密度泛函所得到的结果与实验值比较接近.不论是混合密度泛函还是单一密度泛函计算所得到的耦合常数Jab对基组都有很大的依赖性,且BLYP/LANL2DZ水平下计算所得结果与实验数据吻合程度最好.研究表明,铁磁性配合物[Cu2L(AZ)(DMSO)]中存在着自旋离域和自旋极化效应.  相似文献   

3.
砷原子团簇结构的量子化学密度泛函理论研究   总被引:1,自引:0,他引:1  
采用密度泛函理论的三种方法:局域自旋密度近似SVWN、梯度修正BLYP、杂化密度泛函B3LYP,优化了中性Asn、负离子Asn-(n=2~5)的结构,在优化结构基础上计算了它们的振动光谱,获得它们稳定的最低能量态的结构.其中中性Asn(n=2~5)的稳定结构的计算结果,与已有的理论结果以及实验数据进行了比较.而对负离子Asn-(n=2~5))的稳定结构作了预言.同时计算了Asn(n=2~5)的绝热电子亲和能(EAa),与有关光电子谱学的实验值符合较好.  相似文献   

4.
采用密度泛函理论(DFT)的B3PW91方法,在混合基组水平上对Al掺杂Sn12-团簇几何结构和电子结构进行了计算分析.结果表明,Al内掺杂Sn12-团簇能量更低更稳定,但LU-MO-HOMO能隙较小.外掺杂多面体簇中,电荷从Al原子移向Sn12-笼,趋向形成[Al+Sn122-]结构;内掺杂多面体簇中,电荷从Sn12-笼移向Al原子,趋向形成[Al-@Sn12]结构.  相似文献   

5.
采用对称性破损态方法结合密度泛函理论,选用典型的强反铁磁双核配合物作为研究对象,通过与实验数据相比较,探讨了不同密度泛函方法与基组对计算铜配合物[Cu2(mMP)4(H2O)2]·H2O交换耦合常数的准确度.结果表明,4种混合密度泛函DFT(B3LYP,B3P86,B3PW91和PBE0)的计算结果都能和实验所观察到的值-324cm-1符号一致,但B3PW91方法得到的结果和实验结果吻合程度最好,同时采用方法B3PW91方法计算所得的交换耦合常数Jab对基组的依赖性较大.研究表明,2个Cu(Ⅱ)离子之间的反铁磁相互作用主要源于单占据分子轨道SOMOs大的能量劈裂和桥联配体O-C-O轨道的重叠.  相似文献   

6.
采用含时密度泛函理论(TD-DFT)对8种已知萤光素类似物的垂直激发能和发射能进行了系统的考察.选取10种交换-相关(XC)泛函对8种萤光素类似物的基态和第一单重激发态结构、吸收和发射光谱进行了计算,并将得到的结果与实验数据进行对照.结果表明,该系列物质吸收光谱和发射光谱的计算对XC泛函的选择非常敏感.B3LYP、mPW3PBE、B3PW91方法能够提供较好理论计算结果,吸收光谱的均方根误差(RMS)在0.40eV以内,标准差(SD)在0.27eV以内;发射光谱的RMS在0.24eV以内,SD在0.17eV以内.  相似文献   

7.
采用密度泛函理论结合对称性破损态方法,以吡唑羧酸类席夫碱为配体的四核铜配合物[Cu_4(L)_4]·2NaClO_4·2MeOH(L=5-(1-((3-氨丙基)亚氨基)乙基)-4-甲基-1H-吡唑-3-羧酸)中邻近的双核铜为研究对象,用4种密度泛函方法(PBE0,B3LYP,B3PW91,B3P86)在3个基组(SDD,LANL2DZ,6-31G)水平下对配合物进行计算,计算所得结果都与实验值接近.其中在PBE0/LANL2DZ水平上,该配合物的计算结果与实验值符合程度最好.研究表明该配合物中金属离子之间弱的反铁磁作用是因为能量劈裂较小的单占据分子轨道SOMOs,自旋密度分析显示反铁磁性的铜配合物存在自旋离域效应.  相似文献   

8.
Au10团簇结构与电性质的理论研究   总被引:1,自引:0,他引:1  
韩哲  张冬菊  刘成卜 《化学学报》2009,67(5):387-391
使用4种流行的泛函(BPW91, B3PW91, PW91和B3LYP)考查了若干Au10团簇结构的稳定结构, 获得了能量最有利的6种异构体(其中2种以前未见报道), 并在此基础上进一步用MP2方法校准了它们的相对稳定性, 分析了它们的电子性质以及最稳定异构体与氧分子的化学反应性能. 计算结果表明Au10团簇异构体的相对稳定性明显依赖所使用的理论方法和泛函, 密度泛函结果显示Au10倾向于采用平面结构, 且不同的泛函给出异构体的相对稳定性次序也不相同, 而MP2计算则显示三维空间结构的Au10团簇更稳定, Au10可能是金团簇从二维结构到三维结构演化的一个临界点.  相似文献   

9.
采用对称性破损态方法结合密度泛函理论,以双亚甲胺席夫碱为配体的双核吡唑铜配合物[Cu_2L(PZ)](L=双甲亚胺三阴离子,由1-苯基-3-甲基-4-甲酰吡唑和1,3-二氨-2-丙醇衍生而成;PZ=吡唑阴离子)作为研究对象,通过与实验数据相比较,讨论了不同密度泛函方法与基组对金属铜配合物磁交换耦合常数的影响.结果表明,4种混合密度泛函方法(B3PW91,B3LYP,B3P86和PBE)及3种单一密度泛函方法(BPW91,BLYP和BP86)的计算结果都能与实验值符号一致,且B3P86方法所得到的结果与实验值最为接近,而单一密度泛函的计算结果误差较大,与实验值吻合程度不好.同时采用B3P86方法计算所得交换耦合常数Jab对基组的依赖性较大.研究表明,2个Cu(Ⅱ)离子之间弱的反铁磁相互作用主要源于单占据分子轨道SOMOs小的能量劈裂.  相似文献   

10.
薛英  郭勇  徐学军  谢代前  鄢国森 《化学学报》2000,58(10):1254-1258
用多种密度泛函理论(DFT)方法(BLYP/6-31G^*^*,B3LYP/6-31G^*^*,B3PW91/6-31G^*^*和SVWN/6-31G^*^*)对吲哚分子的平衡几何构型进行了优化。在优化构型的基础上计算了吲哚分子的谐力场、振动基频和红外光谱强度。计算得到的振动频率与实验值比较平均偏差对四种计算方法(BLYP/6-31G^*^*,P3LYP/6-31G^*^*,B3PW91/6-31G^*^*和SVWN/6-31G^*^*)分别为16.3,40.5,45.1和26.4cm^-^1。BLYP/6-31G^*^*理论力场被用于吲哚分子的简正坐标分析计算中。根据振动率的势能分布(PEDs)对此分子的振动基频进行了理论归属。  相似文献   

11.
The ground state coordination isomers for 30 different trigonal bipyramidal transition metal complexes have been predicted using different levels of quantum mechanics: semiempirical (PM3(tm)), ab initio (MP2//HF), pure (BPW91) and hybrid (B3PW91) density functional theory (DFT) methods. For species where these methods failed to reproduce crystallographic data, hybrid quantum mechanics/molecular mechanics (QM/MM) methods were used to study more exact experimental models. Literature deficiencies regarding ground state multiplicity of these species were supplemented by spin predictions using previously tested PM3(tm) methods. Geometry optimization calculations were performed for each possible coordination isomer. The predicted ground state minima provided by the different methods are compared to each other and with crystallographic data. Pure DFT functionals outperformed hybrid functionals and MP2//HF. The very rapid PM3(tm) parameterization method provided accurate predictions in comparison to other levels of theory. An integrated MM/PM3(tm)/DFT de novo scheme accurately reproduced crystallographic data for species where the individual methods failed.  相似文献   

12.
Bond distances, vibrational frequencies, electron affinities, ionization potentials, and dissociation energies of the diatomic 5d transition metal (except La) monoxides and their positively and negatively charged ions were studied by use of density functional methods B3LYP, BLYP, B3PW91, BPW91, B3P86, BP86, MPW1PW91, PBE1PBE, and SVWN. Our calculation shows that for each individual species, the calculated properties are quite sensitive to the method used. Compared with hybrid density functional method B3PW91 (B3P86), pure density functional method BPW91 (BP86) gives longer bond distance (lower vibrational frequency) from HfO to PtO for neutral species, HfO+ to IrO+ for cationic species, and HfO to AuO for anionic species. While for B3LYP and BLYP, the trend was observed for cationic species from HfO+ to IrO+ and anionic species from HfO to AuO (except TaO), but not for neutrals. Pure density function methods BLYP, BPW91, and BP86 give larger dissociation energy compared with hybrid density functional methods B3LYP, B3PW91, and B3P86. SVWN in most cases gives the smallest bond distance, while BLYP gives the largest value. MPW1PW91 and PBE1PBE show the same performance in predicting the spectroscopic constants. In addition, useful empirical criteria that one has obtained the ground states of a species and its ions are the spin multiplicities of a neutral and its single charged ions which differs by ±1.  相似文献   

13.
The molecular structures and electron affinities of the C6H5X/C6H5X- (X = N, S, NH, PH, CH2, and SiH2) species have been determined using seven different density functional or hybrid Hartree-Fock density functional methods. The basis set used in this work is of double-zeta plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. These methods have been carefully calibrated (Chem. Rev. 2002, 102, 231). The geometries are fully optimized with each density functional theory (DFT) method, and discussed. Harmonic vibrational frequencies were found to be within 3.2% of available experimental values for most functionals. Three different types of the neutral-anion energy separations reported in this work are the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). The most reliable adiabatic electron affinities, obtained at the DZP++ BPW91 level of theory, are 1.45 (C6H5N), 2.29 (C6H5S), 1.57 (C6H5NH), 1.51 (C6H5PH), 0.91 (C6H5CH2), and 1.48 eV (C6H5SiH2), respectively. Compared with the experimental values, the average absolute error of the BPW91 method is 0.04 eV. The B3LYP and B3PW91 functionals also gave excellent predictions, with average absolute errors of 0.06 and 0.07 eV, respectively.  相似文献   

14.
15.
We found from DFT calculations that Ag-Ag orbital interactions as well as Ag-O electrostatic interactions determine the structures of three silver cations inside a nanometer-sized cavity of ZSM-5 (Ag(3)-ZSM-5) in lower and higher spin states. Both interactions strongly depend on the number of Al atoms substituted for Si atoms on the ZSM-5 framework (ZSM-5(Al(n))), where n ranges from 1 to 3. In smaller n, stronger Ag-Ag orbital interactions and weaker Ag-O electrostatic interactions operate. Accordingly, there are significant dependencies of the structures of three silver cations on the number of Al atoms. In lower spin states of Ag(3)-ZSM-5(Al(1)) and Ag(3)-ZSM-5(Al(2)), D(3h)-like triangle clusters are contained inside ZSM-5 whereas their higher spin states have triangle clusters distorted significantly from the D(3h) structure. In lower spin states, the totally symmetric orbital consisting of 5s(Ag) orbitals is responsible for cluster formation, whereas in higher spin states occupation of a 5s(Ag)-based orbital with one node results in significant distortion of the triangle clusters. The distortion can be partially understood by analogies to Jahn-Teller distortion of the bare D(3h) Ag(3)(+) cluster in the triplet spin state. When n is 3, we found that three silver cations are isolated in a lower spin state and that a linear cluster consisting of two silver cations is formed in a higher spin state. Thus, we demonstrate from DFT calculations that the number of Al atoms can control the properties of three silver cations inside a ZSM-5 cavity. Since the structural and electronic features of the enclosed silver clusters can link to their catalytic properties, the DFT findings can help us to understand the catalytic activity of Ag-ZSM-5.  相似文献   

16.
The electronic and geometrical structures of Al7N- are investigated using photoelectron spectroscopy and ab initio calculations. Photoelectron spectra of Al7N- have been obtained at three photon energies with six resolved spectral features at 193 nm. The spectral features of Al7N- are relatively broad, in particular for the ground state transition, indicating a large geometrical change from the ground state of Al7N- to that of Al7N. The ground state vertical detachment energy is measured to be 2.71 eV, whereas only an upper limit of approximately 1.9 eV can be estimated for the ground state adiabatic detachment energy due to the broad detachment band. Global minimum searches for A7N- and Al7N are performed using several theoretical methods. Vertical electron detachment energies are calculated using three different methods for the lowest energy structure and compared with the experimental data. Calculated results are in excellent agreement with the experimental data. The global minimum structure of Al7N- is found to possess C3v symmetry, which can be viewed as an Al atom capping a face of a N-centered Al6N octahedron. In the ground state of Al7N, however, the capping Al atom is pushed inward with the three adjacent Al-Al distances being stretched outward. Thus, even though Al7N still possesses C3v symmetry, it is better viewed as a N-coordinated by seven Al atoms in a cage-like structure. The chemical bonding in Al7N- is discussed on the basis of molecular orbital and natural bond analysis.  相似文献   

17.
Molecular structure and vibrational frequencies of triformylmethane have been investigated by means of density functional theory (DFT) calculations. The geometrical parameters and vibrational frequencies obtained in the B3LYP, B3PW91, BLYP, BPW91, G96LYP and G96PW91 levels of DFT and compared with the corresponding parameters of malonaldehyde (MA). Fourier transform infrared spectra of triformylmethane and its deuterated analogue were clearly assigned. Theoretical calculations show that the hydrogen bond strength of triformylmethane is stronger than that of MA, which is in agreement with spectroscopic results.  相似文献   

18.
19.
The FT-IR and FT-Raman spectra of 1-bromo-3-fluorobenzene (C6H4FBr) molecule have been recorded using Bruker IFS 66 V spectrometer in the range of 4000–100 cm−1. The molecular geometry and vibrational frequencies in the ground state are calculated using the DFT (B3LYP, B3PW91 and MPW91PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets. The computed values of frequencies are scaled using a suitable scale factor to yield good coherence with the observed values. The isotropic DFT (B3LYP, B3PW91 and MPW1PW91) analysis showed good agreement with the experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by B3LYP methods. The complete data of this molecule provide the information for future development of substituted benzene. The influence of bromine and fluorine atom on the geometry of benzene and its normal modes of vibrations has also been discussed. A study on the electronic properties, such as absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, was performed by time dependent DFT (TD-DFT) approach. The electronic structure and the assignment of the absorption bands in the electronic spectra of steady compounds were discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. On the basis of the thermodynamic properties of the title compound at different temperatures have been calculated in gas phase, revealing the correlations between standard heat capacities (C) standard entropies (S), standard enthalpy changes (H) and temperatures.  相似文献   

20.
Classical and path integral Monte Carlo (CMC, PIMC) "on the fly" calculations are carried out to investigate anharmonic quantum effects on the thermal equilibrium structure of the H5(+) cluster. The idea to follow in our computations is based on using a combination of the above-mentioned nuclear classical and quantum statistical methods, and first-principles density functional (DFT) electronic structure calculations. The interaction energies are computed within the DFT framework using the B3(H) hybrid functional, specially designed for hydrogen-only systems. The global minimum of the potential is predicted to be a nonplanar configuration of C(2v) symmetry, while the next three low-lying stationary points on the surface correspond to extremely low-energy barriers for the internal proton transfer and to the rotation of the H2 molecules, around the C2 axis of H5(+), connecting the symmetric C(2v) minima in the planar and nonplanar orientations. On the basis of full-dimensional converged PIMC calculations, results on the quantum vibrational zero-point energy (ZPE) and state of H5(+) are reported at a low temperature of 10 K, and the influence of the above-mentioned topological features of the surface on its probability distributions is clearly demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号