首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Behavior of Ag3 clusters inside a nanometer-sized space of ZSM-5 zeolite
Authors:Yumura Takashi  Nanba Tomohiro  Torigoe Hiroe  Kuroda Yasushige  Kobayashi Hisayoshi
Institution:Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan. yumura@chem.kit.ac.jp
Abstract:We found from DFT calculations that Ag-Ag orbital interactions as well as Ag-O electrostatic interactions determine the structures of three silver cations inside a nanometer-sized cavity of ZSM-5 (Ag(3)-ZSM-5) in lower and higher spin states. Both interactions strongly depend on the number of Al atoms substituted for Si atoms on the ZSM-5 framework (ZSM-5(Al(n))), where n ranges from 1 to 3. In smaller n, stronger Ag-Ag orbital interactions and weaker Ag-O electrostatic interactions operate. Accordingly, there are significant dependencies of the structures of three silver cations on the number of Al atoms. In lower spin states of Ag(3)-ZSM-5(Al(1)) and Ag(3)-ZSM-5(Al(2)), D(3h)-like triangle clusters are contained inside ZSM-5 whereas their higher spin states have triangle clusters distorted significantly from the D(3h) structure. In lower spin states, the totally symmetric orbital consisting of 5s(Ag) orbitals is responsible for cluster formation, whereas in higher spin states occupation of a 5s(Ag)-based orbital with one node results in significant distortion of the triangle clusters. The distortion can be partially understood by analogies to Jahn-Teller distortion of the bare D(3h) Ag(3)(+) cluster in the triplet spin state. When n is 3, we found that three silver cations are isolated in a lower spin state and that a linear cluster consisting of two silver cations is formed in a higher spin state. Thus, we demonstrate from DFT calculations that the number of Al atoms can control the properties of three silver cations inside a ZSM-5 cavity. Since the structural and electronic features of the enclosed silver clusters can link to their catalytic properties, the DFT findings can help us to understand the catalytic activity of Ag-ZSM-5.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号