首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
基于壳层隔绝纳米粒子增强拉曼光谱技术,合成了Au@SiO2纳米粒子,并对其进行了相关表征. 结果表明,包裹的二氧化硅层连续、致密,Au@SiO2膜/Ti电极上可获得金属钛电极上吸附吡啶分子的高质量表面增强拉曼光谱(SERS)信号. 通过Pt、Ni电极的测试,证实该信号源于吸附在基底表面的吡啶分子. 此外,Au@SiO2膜/Ti电极上吸附吡啶分子的现场SERS光谱研究表明,在-0.1 V ~ -0.6 V电位区间,吡啶分子平躺吸附,从-0.6 V起吸附的吡啶分子由平躺逐转变为垂直,而当电位为-1.2 V时,电极表面析氢,吡啶脱附.  相似文献   

2.
利用溶剂热法和种子生长法分别合成Fe3O4磁性纳米粒子和Au@Ag核壳纳米粒子, 利用静电吸附方法成功将聚乙酰亚胺(PEI)修饰到Fe3O4表面并通过N-Ag共价键将Au@Ag核壳纳米粒子组装到Fe3O4表面, 制备Fe3O4/Au@Ag复合材料. 通过控制Au@Ag复合粒子的加入量, 来调节Fe3O4/Au@Ag复合材料的表面增强拉曼(SERS)活性. 以对巯基苯胺(p-ATP)为拉曼活性探针分子来考察该复合纳米材料的SERS性能, 检测限可以低至2×10-9 mol/L. 同时, 将该复合材料应用于农药分子福美双的检测, 检测限可以低至10-6 mol/L. 这种功能性复合材料既具有良好的SERS活性, 又具有Fe3O4磁性内核, 可以通过外加磁场实现对待测分子的分离、富集, 具有更广泛的应用前景.  相似文献   

3.
以聚苯乙烯微球为模板, 经过原位还原和种子生长过程在聚苯乙烯微球表面包覆银(Ag)纳米粒子; 以正硅酸乙酯为硅源, 在十六烷基三甲基溴化铵的导向下实现介孔二氧化硅(mSiO2)可控包覆, 去除模板得到Ag/mSiO2空心微球. 透射电子显微镜(TEM)和氮气吸附-脱附分析结果表明, SiO2壳层厚度约为20 nm, 介孔孔径为2.1 nm, 孔道分布均匀. 进一步利用虹吸作用使对巯基苯胺(4-ATP)分子进入微球内与Ag粒子结合, 构建表面增强拉曼散射(SERS)标记材料. SERS测试结果表明, 该标记材料检测限达到10-7 mol/L, SERS增强因子达到3.7×105.  相似文献   

4.
采用水热法在导电玻璃FTO导电面上沉积TiO2四棱柱阵列; 并以其为基体, 分别采用聚乙烯基吡咯 烷酮(PVP)还原Tollens试剂以及柠檬酸三钠(TSC)还原硝酸银溶液, 将Ag纳米粒子(AgNPs)沉积在TiO2四棱柱阵列上形成TiO2@AgNPs-PVP和TiO2@AgNPs-TSC微纳结构作为表面增强拉曼散射(SERS)基底. 实验结果表明, Ag纳米粒子在TiO2四棱柱阵列上的尺寸和分布可通过改变Tollens试剂的浓度和TSC还原硝酸银溶液的反应时间来调控, 进而优化基底的SERS灵敏度. TiO2@AgNPs-PVP微纳结构对罗丹明6G(R6G)的检出限为10-12 mol/L, 对低活性小分子三聚氰胺的检出限为0.01 mg/mL; TiO2@AgNPs-TSC微纳结构对R6G的检出限为10-10 mol/L, 对三聚氰胺的检出限为0.01 mg/mL. TiO2@AgNPs-PVP和TiO2@AgNPs-TSC微纳结构基底的SERS活性、 循环可回收性与还原剂种类紧密相关: 包覆在Ag纳米粒子上的PVP可以作为隔离层避免Ag纳米粒子直接接触, 防止电磁场耦合作用减弱, 增强基底的SERS活性; 同时, PVP是一种水性聚合物, 有较强的亲水性, 作为循环可回收SERS基底使用时, 吸附小分子物质清洗难度较大.  相似文献   

5.
在水热条件下将纤维素纳米纤维(CNF)同时用作还原剂和稳定剂与氯金酸反应,制备了负载金纳米粒子(Au NPs)的纳米纤维素溶胶。采用真空抽滤的方法在微孔滤膜上一步沉积制备了金/纳米纤维素复合膜,复合膜中纤维束相互交错堆叠成多层三维结构,允许大量金纳米粒子在膜层中均匀分散。以罗丹明6G(R6G)和4-巯基吡啶(4-MPy)为探针分子对该复合膜的SERS性能进行了考察。结果显示,该SERS基底具有高的检测灵敏度和良好的光谱重复性,对R6G和4-MPy的检测限分别达到1×10-8mol/L和1×10-7 mol/L,相对标准偏差为7.8%。利用该复合膜对苯丙胺类毒品进行了分析和鉴定,其对甲基苯丙胺的检测浓度可低至1×10-7 mol/L,检测灵敏度明显优于实验室自制的两种三维结构的纤维柔性SERS基底。同时,将该SERS基底应用于毛发检材中痕量甲基苯丙胺的快速筛查,并采用气相色谱(GC)方法验证结果。结果显示,5份不同添加量的甲基苯丙胺的毛发样品均在1 000和1 030 cm-1出现甲基苯丙胺明显的特征...  相似文献   

6.
利用种子介导的软模板生长方法制备了金纳米线(Au NWs)阵列, 通过调节生长温度控制Au NWs阵列的形貌, 最后在经硼氢化钠(NaBH4)清洗过的Au NWs阵列上化学沉积银纳米颗粒(Ag NPs), 制得银/金纳米线(Ag/Au NWs)阵列作为表面增强拉曼散射(SERS)基底. 选用罗丹明6G(R6G)作为拉曼探针分子测定了Ag/Au NWs阵列的SERS性能. 结果表明, Ag/Au NWs阵列作为SERS基底具有高灵敏度、 优异的信号均匀性和良好的稳定性. 使用Ag/Au NWs阵列对孔雀石绿(MG)检测的检出限可低至1×10-8 mol/L, 线性范围为 1×10-8~1×10-4 mol/L. NaBH4可以在不影响SERS性能的情况下去除Ag/Au NWs阵列上吸附的分子, 使得 SERS基底可以重复使用. 使用Ag/Au NWs阵列对湖水中的MG进行检测, 得到了可靠的回收率, 证明Ag/Au NWs 阵列在检测环境水体中的孔雀石绿上具有应用潜力.  相似文献   

7.
采用脉冲电位法(PPSM)结合聚苯胺(PANI)的层层自组装制备了Pd/PANI交替沉积纳米多层膜, 并用于抗坏血酸(AA)和多巴胺(DA)的检测. 实验发现, 多层膜结构形貌及催化性能受前躯体K2PdCl6浓度、 脉冲条件及膜厚度等影响. 当K2PdCl6浓度为2×10-3 mol/L, 阴极脉冲电位为-0.3 V, 阶跃次数为17时, 5层Pd/PANI修饰玻碳电极对AA和DA的催化性能最佳; 在0.1 mol/L磷酸盐缓冲液中, AA和DA的氧化峰明显分离[ΔEp(AA, DA)=160 mV], 其峰电流与浓度分别在5×10-5~4×10-4和4×10-5~1×10-4 mol/L范围内呈较好线性关系, 实现了对AA和DA的同时测定. 该修饰电极具有良好的抗干扰性和稳定性.  相似文献   

8.
采用溶胶-凝胶法结合超分子模板技术, 以四乙氧基硅烷(TEOS)和3-氨丙基三乙氧基硅烷(APTES)作为反应前体, 以十六烷基三甲基溴化铵(CTMAB)为超分子模板, 简单快速地制备了一种新型氨基硅胶整体柱, 通过氨基将金纳米粒子组装在整体柱材料孔表面并用于表面增强拉曼散射(SERS)光谱分析. 以对巯基苯胺(PATP)和结晶紫(CV)为拉曼探针, 考察了金纳米粒子修饰的氨基硅胶整体柱用作SERS活性基底的性能. 结果表明, 该整体柱基底具有良好的SERS增强效应, 可检测到的PATP和CV的最低浓度分别为10-9和10-11 mol/L. 与金溶胶SERS基底相比, 本文制备的整体柱基底的检测灵敏度显著提高, 并具有良好的信号均一性, 是一种具有现场痕量检测应用潜力的SERS活性基底.  相似文献   

9.
通过高温共沉淀法制备了发光效率高、形貌规则、粒径均一的上转换纳米粒子;采用反相微乳法合成二氧化硅壳层(SiO2),实现上转换纳米粒子从油相到水相的转移;将介孔二氧化硅壳层(mSiO2)包覆在上转换纳米粒子表面,荧光响应分子姜黄素被负载在m SiO2的孔道中。基于荧光共振能量转移的原理,构建“Turn on”纳米传感体系,并用于Cu2+的检测,检测线性范围为10~50μmol/L,检出限为0.5μmol/L。本方法可实现大鼠血清样品中Cu2+的检测。  相似文献   

10.
设计合成了基于萘酰亚胺-咪唑鎓的受体分子1和2,通过荧光发射光谱研究了受体分子1和2对阴离子F-、Cl-、Br-、I-、AcO-、HSO-4、H2PO-4、NO-3、ClO-4的识别性能。 研究发现,在受体分子1和2的乙腈溶液(5.0×10-6 mol/L)中加入10倍化学计量的H2PO-4时,受体分子1的荧光猝灭率高达98%,受体分子2的荧光猝灭率仅为24%。 表明具有多重识别位点的受体分子1在构型上与H2PO-4更匹配,可作为H2PO-4的荧光关闭型(turn-off)探针。 受体分子1与H2PO-4的结合比为1∶1,结合常数为(1.25±0.11)×105 L/mol,检出限为6.90×10-6 mol/L。  相似文献   

11.
In this work,a metal-organic frameworks material MIL-88 was prepared easily using solvent-thermal method,and was first found to have catalytic activities similar to those of biological enzymes such as catalase and peroxidase.The material was characterized by XRD,SEM,TEM,EDX,FT-IR techniques and an N_2 adsorption method.It exhibited peroxidase-like activity through catalytic oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine(TMB) in the presence of H_2O_2,producing a blue-colored solution.Under optimal conditions,the absorbance at 652 nm is linearly correlated with the concentration of H_2O_2 from 2.0×10~(-6) mol/L to 2.03×10~(-5) mol/L(R~2=0.981) with a detection limit of 5.62×10~(-7) mol/L(S/N=3).More importantly,a sensitive and selective method for ascorbic acid detection was developed using this material as a catalyst.The analytical method for ascorbic acid detection was observed to have a linear range from 2.57×10~(-6) mol/L to 1.01×10~(-5) mol/L(R~2=0.989) with a detection limit of 1.03×10~(-6) mol/L(S/N=3).This work suggests MOFs have advantages of preparing biomimetic catalysts and extends applications of the functional MOFs in the field of biosensor.  相似文献   

12.
Developing enzyme-free sensors with high sensitivity and selectivity for H2O2 and glucose is highly desirable for biological science.Especially,it is attractive to exploit noble-metal-free nanomaterials with large surface area and good conductivity as highly active and selective catalysts for molecular detection in enzyme-free sensors.Herein,we successfully fabricate hollow frameworks of Co3O4/N-doped carbon nanotubes(Co3O4/NCNTs)hybrids by the pyrolysis of metal-organic frameworks followed by calcination in the air.The as-prepared novel hollow Co3O4/NCNTs hybrids exhibit excellent electrochemical performance for H2O2 reduction in neutral solutions and glucose oxidation in alkaline solutions.As sensor electrode,the Co3O4/NCNTs show excellent non-enzymatic sensing ability towards H2O2 response with a sensitivity of 87.40μA(mmol/L)^-1 cm^-2,a linear range of 5.00μmol/L-11.00 mmol/L,and a detection limitation of 1μmol/L in H2O2 detection,and a good glucose detection performance with 5μmol/L.These excellent electrochemical performances endow the hollow Co3O4/NCNTs as promising alternative to enzymes in the biological applications.  相似文献   

13.
以无纺布(NWF)为支撑基体, 采用两步化学合成法在NWF上原位构建了由间隙为20~110 nm Ag纳米片(AgNS)组装成的AgNS@NWF微纳结构. 扫描电子显微镜(SEM)分析表明, AgNS@NWF具有特殊的层级结构, 该结构可用于表面增强拉曼散射(SERS)研究. 实验结果表明, AgNS@NWF微纳结构具有良好的SERS灵敏度和优异的信号可重现性. 将罗丹明6G(R6G)作为SERS探针分子, 发现R6G的SERS特征峰强度的对数值与R6G水溶液的浓度对数值呈良好的线性关系, 最低检测限可达1×10?10 mol/L, 表明AgNS@NWF微纳结构具有良好的SERS灵敏度; 当R6G水溶液的浓度为1×10?5, 1×10?6和1×10?7 mol/L时, 610 cm?1处谱带拉曼散射强度的相对标准偏差分别为3.57%, 3.67% 和8.46%, 优于或接近于以往研究, 表明AgNS@NWF微纳结构具有优异的信号可重现性. 将3-巯基丙酸和三聚氰胺作为SERS的检测分子, 最低检测限分别为1×10?5和1×10?6 mol/L. 本文为制备灵敏度高、 信号可重现性优异的SERS基底提供了一种简单、 快速、 成本低廉的方法, 在生物检测和环境监测中具有潜在的应用价值.  相似文献   

14.
以纳米金(Au NPs)为增敏材料,双酚A(BPA)为模板分子,结合表面溶胶凝胶法和自组装法,制备了BPA纳米金-Ti O_2凝胶分子印迹电化学传感器。利用扫描电子显微镜和能谱对Au NPs进行了表征,利用红外光谱仪对Ti O_2凝胶、BPA以及BPA印迹Ti O_2凝胶进行表征。在最优条件下,该传感器对BPA在1.0×10~(-8)~1.0×10~(-5)mol/L浓度范围内具有良好的线性关系,线性相关系数为0.995,检测限为0.6×10~(-8)mol/L,并将该分子印迹传感器应用于实际样品中BPA的分析检测,其回收率为97.4%~103%。  相似文献   

15.
将阳极氧化与光还原法结合,在TiO_(2)纳米管阵列(TiO_(2)NTAs)表面修饰Ag纳米粒子,获得一种均匀有序、稳定性高且可循环的TiO_(2)NTAs/Ag活性基底。采用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(UV-Vis DRS)、表面增强拉曼散射光谱(SERS)和扫描电子显微镜(SEM)等手段对TiO_(2)NTAs/Ag的组成和结构进行了表征。进一步研究了该TiO_(2)-NTAs/Ag阵列对盐酸四环素(TC-HCl)的SERS响应,结果表明,该复合基底对TC-HCl具有较高的检测灵敏度,在水中检测限可达1×10^(−14) mol/L,而TiO_(2)-NTAs与Ag之间的协同效应对其检测性能的提高起着关键作用。此外,TiO_(2)NTAs/Ag基底在光照下对TC-HCl展示了优异的降解活性,且至少可循环使用8次。表明该TiO_(2)NTAs/Ag基底在环境中有机污染物的SERS检测和降解领域具有潜在的应用前景。  相似文献   

16.
In this study, we synthesized molybdenum disulfide/polyaniline (MoS2/PANI) nanocomposite via in situ polymerization of aniline in the presence of thin-layered MoS2. The as-prepared MoS2/PANI nanocomposite obtained an improved electrochemical performance due to the physisorption interaction between aromatic aniline and the basal plane of MoS2. Furthermore, we constructed a new kind of electrochemical sensor based on MoS2/PANI nanocomposite for the detection of chloramphenicol, which showed an excellent performance. The sensor has a high sensitivity and wide detection range from 1×10-7 mol/L to 1×10-4 mol/L, with a low detection limit of 6.9×10-8 mol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号