首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A series of 2,5-di- and 2,3,4,5-tetraferrocenyl-substituted thiophenes, furans, and pyrroles were synthesized using the Negishi C,C cross-coupling protocol. The electronic and electrochemical properties of these compounds were investigated by cyclic voltammetry (CV), square wave voltammetry (SWV), and in situ UV-vis/NIR spectroscopy. The molecular structures of 2,5-diferrocenyl furan and 2,3,4,5-tetraferrocenyl-1-methyl-1H-pyrrole in the solid state are discussed. The ferrocenyls could sequentially be oxidized giving two or four reversible responses for the appropriate di- or tetraferrocenyl-substituted heterocyclic molecules. The observed ΔE°' values range between 186 and 450 mV. The NIR measurements confirm electronic communication as intervalence charge transfer (IVCT) absorptions were found in the corresponding mono- and in case of the tetraferrocenyl compounds also in the dicationic species. All compounds, except tetraferrocenyl thiophene (a class I system), were classified as class II systems according to Robin and Day. They show a linear relationship between ΔE°' and the IVCT oscillator strength f which could be shown for the first time in organometallic chemistry. This was possible because the series of molecules exhibit analogous geometries and hence, similar electrostatic properties. This correlation was confirmed by electro- and spectro-electrochemical measurements. Within these studies a new approach for the estimation of the effective electron transfer distances r(ab) is discussed.  相似文献   

2.
The new dinucleating redox‐active ligand ( LH4 ), bearing two redox‐active NNO‐binding pockets linked by a 1,2,3‐triazole unit, is synthetically readily accessible. Coordination to two equivalents of PdII resulted in the formation of paramagnetic (S= ) dinuclear Pd complexes with a κ2N,N′‐bridging triazole and a single bridging chlorido or azido ligand. A combined spectroscopic, spectroelectrochemical, and computational study confirmed Robin–Day Class II mixed‐valence within the redox‐active ligand, with little influence of the secondary bridging anionic ligand. Intervalence charge transfer was observed between the two ligand binding pockets. Selective one‐electron oxidation allowed for isolation of the corresponding cationic ligand‐based diradical species. SQUID (super‐conducting quantum interference device) measurements of these compounds revealed weak anti‐ferromagnetic spin coupling between the two ligand‐centered radicals and an overall singlet ground state in the solid state, which is supported by DFT calculations. The rigid and conjugated dinucleating redox‐active ligand framework thus allows for efficient electronic communication between the two binding pockets.  相似文献   

3.
以二茂铁炔烃为原料通过“一锅法”环加成反应合成了一系列2,5-双二茂铁基-1-苯基-吡咯衍生物, 包括: 2,5-双二茂铁基-1-(3-三氟甲基苯基)-吡咯(1), 2,5-双二茂铁基-1-(4-氟苯基)-吡咯(2), 2,5-双二茂铁基-1-苯基-吡咯(3), 2,5-双二茂铁基-1-(4-乙基苯基)-吡咯(4)和2,5-双二茂铁基-1-(4-乙氧基苯基)-吡咯(5), 使用元素分析, 傅里叶变换红外(FTIR)光谱, 质谱(MS)和核磁共振(NMR)等手段对化合物进行了结构表征. 采用循环伏安法(CV), 密度泛函理论(DFT)模拟计算研究了苯基上取代基对双二茂铁间电荷交互的影响. 研究发现第一氧化电位(Ea1), 峰电位差(ΔE)与取代基的哈米特常数(σ), 吡咯1H NMR的化学位移(δ), 吡咯N原子自然轨道(NBO)电荷之间存在显著线性关联; 同时发现, N原子电荷密度升高, 双二茂铁间电荷交互能力减弱, N原子电荷密度降低, 双二茂铁间电荷交互能力提高. 因此这类双二茂铁基吡咯衍生物中N原子电荷密度对双二茂铁间电荷交互起着关键的影响作用.  相似文献   

4.
The electrochemical study on Pt(II) organometallic and organic ethynylated compounds bearing nitro substituents in the phenyl groups has been performed, demonstrating that the presence of severe chemical irreversibility accompanying the electron transfer, preclude an evaluation of the electronic communication between redox active centres. The X-ray structure of the complex trans-[Pt(CC-C6H4NO2)2(PPh3)2] is showed.  相似文献   

5.
应用密度泛函理论(DFT)方法计算[6,6]-苯基-C61-丁酸甲酯(PCBM)及其苯环对位取代得到的4种衍生物的几何和电子结构. 采用第一激发能校正了分子的最低未占据分子轨道(LUMO)能级, 探讨了推/拉电子基团对分子前线轨道的影响. 在全优化几何构型的基础上, 采用含时密度泛函理论(TD-DFT)方法研究了电子吸收光谱特征和电荷转移态性质, 并讨论了推/拉电子基团对体系电子吸收光谱性质的影响. 通过对重组能和电子亲和势的计算, 预测了PCBM与4种衍生物的电子能力及电子迁移率大小的关系. 结果表明, 在PCBM中, 在苯环的对位引入推电子基团可以提高分子的前线轨道能级, 改变前线轨道电子云分布, 明显增强可见光范围内的吸收强度, 增加可见光范围内的电荷转移吸收, 且激发态的电荷转移随着引入基团推电子能力的增加而增强. 化合物5的激发态分子内电荷转移性质最强, 且具有较独特的光伏性质. 而在同样位置引入拉电子基团, 则降低了分子前线轨道能级对电子吸收光谱的影响.  相似文献   

6.
The synthesis and absorption/fluorescence properties of two novel intramolecular charge transfer (ICT) compounds of (fluorene-2-yl)-(9-ethylcarbazole-3-yl) ketene and 1-phenyl-3-(fluorenone-2-yl)-5-(9-ethylcarbazole-3-yl)-2-pyrazoline were reported. The primary structure of the target compounds was characterized by IR and 1H NMR. The systems contained a fluorenone or a propenon group as an electron acceptor (A) and an N-ethylcarbazole and a pyrazoline group as electron donors (D). From the emissive properties it was concluded that the electronic coupling between D and A was sufficient to allow charge transfer in these molecules. The ICT maximal emission displayed a large wavelength shift and Stokes shifts increased in response to the increase of the solvent polarity. The highly solvatochromic properties made the two compounds of great interest as new classes of fluorescent probes, electroluminescent and electrofax materials.  相似文献   

7.
In the Robin and Day classification, mixed-valence systems are characterized as Class I, II or III depending on the strength of the electronic interaction between the oxidized and reduced sites, ranging from essentially zero (Class I), to moderate (Class II), to very strong electronic coupling (Class III). The properties of Class I systems are essentially those of the separate sites. Class II systems possess new optical and electronic properties in addition to those of the separate sites. However, the interaction between the sites is sufficiently weak that Class II systems are valence trapped or charge localized and can the be described by a double-well potential. In Class III systems the interaction of the donor and acceptor sites is so great that two separate minima are no longer discernible and the energy surface features a single minimum. The electron is delocalized and the system has its own unique properties. The Robin and Day classification has enjoyed considerable success and most of the redox systems studied to date are readily assigned to Class II. However the situation becomes much more complicated when the system shows borderline Class II/III behavior. Such "almost delocalized" mixed-valence systems are difficult to characterize. In this article spectral band shapes and intensities are calculated utilizing increasingly complex models including two to four states. Free-energy surfaces are constructed for harmonic diabetic surfaces and characterized as a function of increasing electronic coupling to simulate the Class II to III transition. The properties of the charge-transfer absorption bands predicted for borderline mixed-valence systems are compared with experimental data. The treatment is restricted to symmetrical (delta G0 = 0) systems.  相似文献   

8.
The phenanthridinium chromophores 5‐ethyl‐6‐phenylphenanthridinium ( 1 ), 5‐ethyl‐6‐methylphenanthridinium ( 2 ), 3,8‐diamino‐5‐ethyl‐6‐methylphenanthridinium ( 3 ), and 3,8‐diamino‐5‐ethyl‐6‐(4‐N,N‐diethylaminophenyl)phenanthridinium ( 4 ) were characterized by their optical and redox properties. All dyes were applied in titration experiments with a random‐sequence 17mer DNA duplex and their binding affinities were determined. The results were compared to well‐known ethidium bromide ( E ). In general, this set of data allows the influence of substituents in positions 3, 6, and 8 on the optical properties of E to be elucidated. Especially, compound 4 was used to compare the weak electron‐donating character of the phenyl substituent at position 6 of E with the more electron‐donating 4‐N,N‐diethylaminophenyl group. Analysis of all of the measurements revealed two pairs of chromophores. The first pair, consisting of 1 and 2 , lacks the amino groups in positions 3 and 8, and, as a result, these dyes exhibit clearly altered optical and electrochemical properties compared with E . In the presence of DNA, a significant fluorescence quenching was observed. Their binding affinity to DNA is reduced by nearly one order of magnitude. The electronic effect of the phenyl group in position 6 on this type of dye is rather small. The properties of the second set, 3 and 4 , are similar to E due to the presence of the two strongly electron‐donating amino groups in positions 3 and 8. However, in contrast to 1 and 2 , the electron‐donating character of the substituent in position 6 of 3 and 4 is critical. The binding, as well as the fluorescence enhancement, is clearly related to the electron‐donating effect of this substituent. Accordingly, compound 4 shows the strongest binding affinity and the strongest fluorescence enhancement. Quantum chemical calculations reveal a general mechanism related to the twisted intramolecular charge transfer (TICT) model. Accordingly, an increase of the twist angle between the phenyl ring in position 6 and the phenanthridinium core opens a nonradiative channel in the excited state that depends on the electron‐donating character of the phenyl group. Access to this channel is hindered upon binding to DNA.  相似文献   

9.
The preferred conformation of phenyl-2 aziridine involves the phenyl ring nearly bisecting the plane of the small ring (maximum conjugation). As the steric hindrance due to substituents on the aromatic ring is more substantial, the aromatic ring moves towards a perpendical plane. Good agreement between experimental (IR and NMR) and theoretical studies of the syn-anti configurational equilibrium of NH in these compounds is demonstrated. The analysis of the total electronic populations clarifies an understanding of the variation of the charge transfer small ring?aromatic cycle as a function of the aromatic nucleus.  相似文献   

10.
Complexes of α-Diimines with Pentamethylcyclopentadienylrhodium in Different Oxidation States Cationic complexes [Cp*RhCl(α-diimine)]+ of trivalent rhodium and heterocyclic α-diimines or 1,4-disubstituted 1,4-diazabutadienes were isolated as hexafluorophosphates und subjected to electrochemical studies. Chemical or electrochemical two electron reduction yields intensely coloured and highly reactive neutral complexes Cp*Rh(α-diimine) which are very easily oxidized and which can be reduced further at negative potentials. The electronic structure of these compounds was studied using 1H-NMR and UV/Vis spectroscopy. Comparisons of charge transfer (CT) transition energies with redox potentials suggest very variable geometrical changes between ground and CT excited states.  相似文献   

11.
Dicyanamide-bound mononuclear compounds Cp(dppe)FeN(CN)2 (3) and Cp(PPh3)2RuN(CN)2 (4) were isolated in high yields by the reactions of Cp(dppe)FeCl (1) and Cp(PPh3)2RuCl (2), respectively, with excess sodium dicyanamide. Compounds 3 and 4 are excellent precursors for the design of dicyanamide-bridged binuclear complexes [[Cp(dppe)Fe]2N(CN)2](SbF6) (5) and [[Cp(PPh3)2Ru]2N(CN)2](SbF6) (6) by the incorporation with 1 and 2, respectively. Controlling oxidation of 5 with ferrocenium hexafluorophosphate afforded the mixed-valence compound [[Cp(dppe)Fe]2N(CN)2](PF6)2 (5a) which exhibits a broad absorption band in the near-infrared region (centered at 1500 nm, epsilon = 750 cm-1 M-1) due to the intervalence charge transfer of Robin and Day class II mixed-valence system. Tricyanomethanide-bound mononuclear compounds Cp(dppe)FeC(CN)3 (7) and Cp(PPh3)2RuC(CN)3 (8) were prepared by the same methods as 3 and 4 using potassium tricyanomethanide as the starting material instead. The tricyanomethanide-bridged binuclear complexes [[Cp(dppe)Fe]2C(CN)3](CF3SO3) (9) and [[Cp(PPh3)2- Ru]2C(CN)3](SbF6) (10) were prepared by the reactions between 7 and 1 and between 8 and 2, respectively. Cyclic voltammograms of the dicyanamide/tricyanomethanide-bridged binuclear complexes showed stepwise reversible one-electron oxidation waves with the potential separation of the two redox couples in the range 0.14-0.25 V, indicating the demonstrably electronic communication is operative between the organometallic components through a dicyanamide/tricyanomethanide spacer with metal...metal distances more than 7.8 A. Furthermore, the electronic coupling transmitted by the tricyanomethanide is appreciably greater than that by the dicyanamide. The complexes 3-10 were characterized by elemental analysis, IR, UV-vis, 1H and 31P NMR, and ES-MS. The crystal structures of 3 and 5-9 were determined by X-ray crystallography.  相似文献   

12.
The previously unknown 2,4,6-trisubstituted pyrylium salts 1-4 , carrying cyclopropyl and methyl or phenyl substituents in the same molecule, and 5-8 , substituted with isopropyl groups instead of cyclopropyl, were synthesized as perchlorates. The electronic spectra and the C-13 nmr spectra of the two groups of compounds were compared. A cyclopropyl group has a batochromic effect on the electronic spectrum roughly half that exerted by a phenyl; replacement of an alkyl by a cyclopropyl shifts the highest wavelength absorption band by about 20 nm. Presence of phenyl substituents reduces the batochromic effects of cyclopropyl substituents. The effects of both cyclopropyl and phenyl substituents on the electronic spectra are smaller for pyrylium than for tropylium. The nmr signals for all the ring carbons are shifted upfield upon replacement of isopropyl by cyclopropyl; in particular, the effect of substituents in position 2 upon the chemical shift of C(4) indicates that the electron-releasing effect varies in the series alkyl < phenyl < cyclopropyl, in agreement with the findings for 2,6-disubstituted pyrylium salts. The difference between the chemical shifts for the methine and methylene carbons of the three-membered ring is a function of the electron demand of the cationic heterocycle.  相似文献   

13.
The electron ionization mass spectra of the 1-phenyl-, 1-benzyl- and 6-benzyl-1-phenyl-2,3-dihydroimidazo[1,2-a]pyrimidine-5,7(1H,6H)-dione derivatives were recorded at 70 eV to find out the effects of substituents on their fragmentations. Fragmentation pathways were studied using B/E and B(2)/E scans. Some fragmentations involved the loss of C(3)HO(2) or carbon suboxide. The possibility of keto-enol tautomerism was also studied. For comparison selected compounds were studied using (1)H and (13)C NMR spectroscopy to reveal the presence of possible tautomerism. Some ions including [M-OH](+) and [M-HCO](+) and NMR results indicate that the enol form is predominant both in the gas and in the liquid phase.  相似文献   

14.
Symmetric‐ and asymmetric hexaarylbenzenes (HABs), each substituted with three electron‐donor triarylamine redox centers and three electron‐acceptor triarylborane redox centers, were synthesized by cobalt‐catalyzed cyclotrimerization, thereby forming compounds with six‐ and four donor–acceptor interactions, respectively. The electrochemical‐ and photophysical properties of these systems were investigated by cyclovoltammetry (CV), as well as by absorption‐ and fluorescence spectroscopy, and compared to a HAB that only contained one neighboring donor–acceptor pair. CV measurements of the asymmetric HAB show three oxidation peaks and three reduction peaks, whose peak‐separation is greatly influenced by the conducting salt, owing to ion‐pairing and shielding effects. Consequently, the peak‐separations cannot be interpreted in terms of the electronic couplings in the generated mixed‐valence species. Transient‐absorption spectra, fluorescence‐solvatochromism, and absorption spectra show that charge‐transfer states from the amine‐ to the boron centers are generated after optical excitation. The electronic donor–acceptor interactions are weak because the charge transfer has to occur predominantly through space. Moreover, the excitation energy of the localized excited charge‐transfer states can be redistributed between the aryl substituents of these multidimensional chromophores within the fluorescence lifetime (about 60 ns). This result was confirmed by steady‐state fluorescence‐anisotropy measurements, which further indicated symmetry‐breaking in the superficially symmetric HAB. Adding fluoride ions causes the boron centers to lose their accepting ability owing to complexation. Consequently, the charge‐transfer character in the donor–acceptor chromophores vanishes, as observed in both the absorption‐ and fluorescence spectra. However, the ability of the boron center as a fluoride sensor is strongly influenced by the moisture content of the solvent, possibly owing to the formation of hydrogen‐bonding interactions between water molecules and the fluoride anions.  相似文献   

15.
The rates of photoinduced electron transfer (ET) reactions across two oligo-norbornyl spacer groups (S), that is, structure 1 fused by two norbornadiene (NBD) units and structure 2 fused by three NBD units, are examined. Substituted naphthalene acted as an electron donor (D), whilst ethylene-1,2-dicarboxylate as an electron acceptor (A). ET rates were measured by fluorescence quenching experiments on these D-S-A dyads, and the results were correlated with reaction free energies according to the Marcus relationship. It was found that naphthalene with phenyl substituents showed relatively slower ET rates. The conformational flexibility of phenyl substituents may cause a hindrance on the electronic coupling between D and A. Another salient feature was the abnormally high quenching rates observed in nonpolar solvents such as cyclohexane, the results of which may be ascribed to a competing energy transfer process.  相似文献   

16.
A new class of isomers, namely, intercage electron‐transfer isomers, is reported for fluorinated double‐cage molecular anion e?@C20F18(NH)2C20F18 with C20F18 cages: 1 with the excess electron inside the left cage, 2 with the excess electron inside both cages, and 3 with the excess electron inside the right cage. Interestingly, the C20F18 cages may be considered as two redox sites existing in a rare nonmetal mixed‐valent (0 and ?1) molecular anion. The three isomers with two redox sites may be the founding members of a new class of mixed‐valent compounds, namely, nonmetal Robin–Day Class II with localized redox centers for 1 and 3 , and Class III with delocalized redox centers for 2 . Two intercage electron‐transfers pathways involving transfer of one or half an excess electron from one cage to the other are found: 1) Manipulating the external electric field (?0.001 a.u. for 1 → 3 and ?0.0005 a.u. for 1 → 2 ) and 2) Exciting the transition from ground to first excited state and subsequent radiationless transition from the excited state to another ground state for 1 and 3 . For the exhibited microscopic electron‐transfer process 1 → 3 , 2 may be the transition state, and the electron‐transfer barrier of 6.021 kcal mol?1 is close to the electric field work of 8.04 kcal mol?1.  相似文献   

17.
The synthesis and characterization of 10 cyano-bridged trinuclear mixed-valence compounds of the form [(NH3)5M-NC-FeII(CN)4-CN-M'(NH3)5]n+ (M = RuIII, OsIII, CrIII, or PtIV; n = 2, 3, or 4) is reported. The electronic spectra of these supramolecular compounds exhibit a single intervalent (IT) absorption band for each nondegenerate Fe-->M/M' transition. The redox potential of the Fe(II) center is shifted more positive with the addition of each coordinated metal complex, while the redox potentials of the pendant metals vary only slightly from their dinuclear counterparts. As a result, the Fe-->M IT bands are blue-shifted from those in the corresponding dinuclear mixed-valence compounds. The energies of these IT bands show a linear correlation with the ground-state thermodynamic driving force, as predicted by classical electron transfer theory. Estimates of the degree of electronic coupling (Hab) between the metal centers using a theoretical analysis of the IT band shapes indicate that most of these values are similar to those for the corresponding dinuclear species. Notable exceptions occur for the Fe-->M IT transitions in Os-Fe-M (M = Cr or Pt). The enhanced electronic coupling in these two species can be explained as a result of excited state mixing between electron transfer and/or ligand-based charge transfer states and an intensity-borrowing mechanism. Additionally, the possibility of electronic coupling between the remote metal centers in the Ru-Fe-Ru species is discussed in order to explain the observation of two closely spaced redox waves for the degenerate Ru(III) acceptors.  相似文献   

18.
Boron dipyrromethene dyes (Bodipy) bearing a meso-phenyl substituent carrying a variety of functional groups can be prepared under mild conditions. A single-crystal X-ray structure determination for the 3,5-dinitrophenyl compound shows the phenyl ring to be almost orthogonal (dihedral angle 84 degrees) to the plane of the Bodipy core, with one nitro group almost coplanar with the ring and the other tilted by approximately 21 degrees. Nitro substituents at the 3-, 4-, and 5- positions of the phenyl group are readily reduced to the corresponding amino groups and then converted to isocyanato, isothiocyanato, urea, thiourea, and some polyimine derivatives, the last providing additional functionality (phenazine and pyridylindole units) suitable for chelation of metal ions. All compounds are redox active, the electron-transfer processes being assigned on the basis of comparisons with model compounds. Their fluorescence properties are sensitive to the phenyl group substituents. The Bodipy unit excited state appears to be a strong reductant (Eo approximately -1.4 V) and a modest oxidant (Eo approximately +1.0 V). Quenching processes in the nitro and phenazine derivatives appear to involve intramolecular photoinduced electron transfer.  相似文献   

19.
(N‐Phenylfluorenylidene)acridane (Ph‐FA) compounds with electron‐withdrawing and ‐donating substituents (H, MeO, Ph, NO2, Br, F) at the para position of the phenyl group were successfully synthesized by Barton–Kellogg reactions of N‐aryl thioacridones and diazofluorene. By using the substituent on the nitrogen atom to alter the electronic properties, both the folded and twisted conformers of p‐NO2‐C6H4‐FA could be crystallographically characterized, which enabled the charge transfer from the electron‐donating acridane moiety to the electron‐accepting fluorenylidene moiety to be understood. Ground‐state mechanochromism, thermochromism, vapochromism, and proton‐induced chromism were demonstrated between the folded and twisted conformations of the conformers. Protonation and chemical oxidation of Ph‐FA gave two stable acridinium compounds, namely, the fluorenylacridinium and acridinium radical cations. The present study will contribute to the development of functional dyes and organic semiconductors.  相似文献   

20.
Theoretical calculations based on the density functional theory (DFT) were performed to understand the effect of substituents on the molecular and electronic structures of technetium nitrido complexes with salen type Schiff base ligands. Optimized structures of these complexes are square pyramidal. The electron density on a Tc atom of the complex with electron withdrawing substituents is lower than that of the complex with electron donating substituents. The HOMO energy is lower in the complex with electron withdrawing substituents than that in the complex with electron donating substituents. The charge on Tc atoms is a good measure that reflects the redox potential of [TcN(L)] complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号