首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用聚铝碳硅烷和聚碳硅烷共混制备含铝碳化硅的先驱体,并与直接合成得到的聚铝碳硅烷进行了比较.元素分析表明,共混法能够有效控制聚铝碳硅烷中的铝含量,且共混聚铝碳硅烷先驱体Si—H键含量更高.流变性能研究表明,共混获得的聚铝碳硅烷先驱体黏流活化能从255kJ/mol降至200kJ/mol,先驱体的可纺性提高,所以原纤维的平均直径从19μm降至12μm.预氧化后聚铝碳硅烷原纤维经1800℃一步烧成可得到致密的SiC(Al)纤维;XRD研究表明,纤维中的铝起到抑制碳化硅晶粒长大的作用.  相似文献   

2.
聚锆碳硅烷陶瓷先驱体的制备与表征   总被引:1,自引:0,他引:1  
为了提高SiC陶瓷纤维的综合性能,利用聚二甲基硅烷(PDMS)热解制得的液相产物聚硅碳硅烷(PSCS)与乙酰丙酮锆(Zr(AcAc)4)反应,制备了含锆SiC陶瓷纤维的先驱体聚锆碳硅烷(PZCS).选用液相PSCS作为反应原料,可使锆元素在先驱体中分布更加均匀,并能防止Zr(AcAc)4在反应过程中升华.实验合成的PZCS化学式为SiC1.94HxO0.066Zr0.0104,数均分子量Mn=200~400,再成型性良好.反应机理研究表明,反应过程中存在PSCS裂解重排反应,Si—H键在反应中显示出很高的活性,PZCS分子量的增加是PSCS形成的Si—H键与Zr(AcAc)4的配位基发生交联反应的结果.利用PZCS制备的Si—Zr—C—O陶瓷纤维平均强度2.6GPa,平均直径11μm,性能优异.  相似文献   

3.
采用聚硅碳硅烷(PSCS)与乙酰丙酮铝反应,合成出聚铝碳硅烷(PACS)陶瓷先驱体聚合物.经熔融纺丝、空气不熔化、烧成与高温烧结等工艺, 制备性能优异的耐高温碳化硅纤维SiC(Al).经29Si MAS NMR、 XRD、 Raman谱、AES与SEM等一系列分析表明,该纤维的化学组成和结构与普通碳化硅纤维显著不同,具有近化学计量比组成,氧、游离碳以及SixCyOz相的含量大大低于普通碳化硅纤维,这是其高温稳定的主要原因.在制备过程中铝作为烧结助剂起到了使纤维致密化与抑制晶粒快速增长的作用.  相似文献   

4.
强度增强泡沫炭的制备、结构与性能   总被引:1,自引:0,他引:1  
本文采用石油系中间相沥青为原料,通过发泡、炭化和石墨化制备了沥青基泡沫炭,用聚碳硅烷(PCS)浸渍-裂解(PIP)工艺增强泡沫炭的机械强度。采用扫描电子显微镜(SEM)分析其微观结构, X射线衍射(XRD)分析确认PCS的裂解产物为β-SiC。经过三次PIP工艺,压缩强度测试表明泡沫炭的压缩强度随PIP次数的增加而显著提高。  相似文献   

5.
结合毛细管微模塑技术、模板技术和先驱体转化技术, 以图案化聚二甲基硅氧烷(PDMS)弹性体为模具,以氧化硅凝胶小球为模板, 以液态聚碳硅烷(PCS)为先驱体, 经过氧化硅凝胶小球图案化模板的形成, 先驱体的渗入, 模板中先驱体的交联, 弹性模具的去除, 图案化先驱体的无机化和模板的去除, 制备了图案化多孔SiC 陶瓷.研究结果表明:所制备的图案化多孔陶瓷中, 图案的尺寸受图案化PDMS 弹性模具的控制, 球形孔的孔径可由氧化硅凝胶小球来调节. 图案化陶瓷中球形孔不仅三维有序排列, 而且由于模板中小球的相互接触形成的“窗 口”使球形孔三维贯通.  相似文献   

6.
以聚铝碳硅烷(PACS)为先驱体, 采用先驱体转化技术制备出耐超高温的连续SiC纤维. 研究了制备过程中纤维结构和取向的演变及其对纤维性能的影响. 研究结果表明, 耐超高温连续SiC纤维制备过程中纤维结构的演变随温度变化分为分子间交联(≤600 ℃)、基本无机化(600—800 ℃)、完全无机化(800—1300 ℃)和结晶重排(1300—1800 ℃) 四个阶段; 纤维的取向随着结构的演变而改变, 连续PACS纤维沿轴向具有的微弱取向, 经热分解后演变到1300 ℃的产物中, 1300 ℃后随着结晶重排的发生, 纤维由各向异性转变为各向同性; 结构和取向的转变对于纤维性能具有很大的影响.  相似文献   

7.
采用SiC纳米粉体与聚碳硅烷(PCS)为原料低压成型低温烧结制备SiC纳米多孔陶瓷,研究了PCS含量对烧成纳米多孔陶瓷性能的影响。SEM和AFM微观形貌分析表明,PCS裂解产物将SiC纳米颗粒粘结起来,烧成陶瓷内部有大量的纳米孔存在。烧成SiC纳米多孔陶瓷孔径分布呈单峰分布、孔径分布范围窄,随着PCS含量的增大烧成多孔陶瓷强度增大,但孔隙率降低、烧结过程中坯体尺寸线收缩率增大。PCS含量为20wt%时三点弯折强度为36.8MPa,孔隙率为39.5%,平均孔径为49.3 nm。  相似文献   

8.
连续碳化硅纤维的原丝——聚碳硅烷纤维的成形是SiC纤维制备的关键技术之一,原丝品质的好坏对SiC纤维性能有重要影响。本文分析了聚碳硅烷和聚碳硅烷纤维的特点,并对聚碳硅烷的基本流变性质、粘弹性、聚碳硅烷的可纺性、纤维断裂机理和纺丝稳定性等研究进行了介绍。  相似文献   

9.
以有机金属聚合物聚铝碳硅烷为原料, 利用先驱体转化法制备出连续SiC(Al)纤维. 采用一系列分析测试对纤维的组成、结构以及耐超高温性能进行了表征, 通过与Nicalon纤维的比较, 对连续SiC(Al)纤维的耐超高温机理进行了研究. 结果表明, 连续SiC(Al)纤维具有优异的耐超高温性能,在1800 ℃氩气中处理1 h后, 纤维的强度保留率为80%左右; 元素分析和27Al MAS核磁共振等分析表明, 连续SiC(Al)纤维为近化学计量比的SiC纤维, 纤维中微量的铝元素以Al—O和Al—C键两种形式存在; 在超高温条件下, 两种不同存在形式的铝均能够抑制纤维中晶粒的长大. 纤维具有近化学计量比的组成和铝元素在高温条件下对于晶粒长大的抑制, 是连续SiC(Al)纤维具有优异耐超高温性能的原因.  相似文献   

10.
聚合物先驱体转化法作为制备SiBCN陶瓷及其复合材料的重要途径,具有成型温度低、产物结构和组成可控等优点.设计合成合适的聚合物先驱体是提高陶瓷产率和性能的关键因素之一,本文采用三氯环硼氮烷(TCB)与乙炔基氯化镁进行反应,合成了乙炔基环硼氮烷,进而与二氯硅烷和二氯甲基乙烯基硅烷进行共氨解反应,制备了聚硼硅氮烷先驱体(PBSZ)并进行了高温裂解.采用综合热分析(TG-DSG)对其陶瓷化过程进行了分析,并采用XRD和SEM对陶瓷化产物的结构进行了表征.PBSZ在室温下是液态,易溶于二氯甲烷和氯仿等溶剂,可加工性优良.基于PBSZ先驱体的SiBCN陶瓷产率超过80%;陶瓷化产物在1400℃以下为无定形状态,在1500℃可形成由α-Si3N4,β-Si3N4,h-BN和SiO2晶体结构组成的陶瓷;陶瓷产物表面致密平整且具有优异的热稳定性和氧化性能,表明聚硼硅氮烷(PBSZ)有望成为高陶瓷产率和高性能陶瓷的重要先驱体.  相似文献   

11.
聚碳硅烷纤维的热交联研究   总被引:8,自引:0,他引:8  
在无氧的情况下对PCS纤维进行热交联时 ,发现在热交联前纤维必须有一个最低的预氧化程度 ,然后通过PCS纤维自身热交联实现预氧化 ,这样可降低纤维 1 3的氧含量 ,制备性能优良的SiC纤维 .研究了低预氧化PCS纤维热交联反应的机理 ,并对引入氧在热交联中所起的作用进行了分析 .研究结果表明 ,PCS纤维能够进行热交联处理所需的最低预氧化程度为纤维氧增重 9% ;热交联的过程主要是消耗了PCS中的SiH键 ,生成SiCH2 Si键 ,形成分子间交联 ;引入的少量氧预氧化时生成SiOH键 ,热交联中发生脱水反应生成SiOSi键 ,在纤维表层形成保护层 ,保证了纤维的热交联顺利进行  相似文献   

12.
Stress concentration and weak interfacial strength affect the mechanical properties of short carbon fibers (CFs) reinforced polymer composites. In this work, the cauliflower-like short carbon fibers (CCFs) were prepared and the point was to illuminate the effects of fiber morphology on the mechanical properties of the CCFs/rigid polyurethane (RPU) composites. The results indicated that the surface structure of CCFs could increase the surface roughness of the fibers and the contact area between fibers and matrix, thereby promoting the formation of irregular interface. Compared with pure RPU and initial CFs/RPU composites, the strength and toughness of CCFs/RPU composites were simultaneously improved. The satisfactory performance was attributed to the special fibers structure, which played an anchoring role and consumed more energy during crack propagation.  相似文献   

13.
A "brick-and-mortar" assembly approach for creating porous carbon and carbon/metal oxide fibers on the micron scale with well-defined pore structure and interface is presented. A series of monodisperse silica@polyacrylonitrile (PAN) and silica@metal oxide@PAN core/shell particles were synthesized by emulsion polymerization and assembled into organic-inorganic composite fibers through a simple ice-templating strategy with the assistance of polyvinyl alcohol. Porous carbon and carbon/metal oxide fibers with well-controlled pores and interfaces were created by oxidative stabilization and carbonization of composite fibers followed by removal of silica cores with hydrofluoric acid or concentrated alkali. The pore structure and the carbon/metal oxide interfaces of the fibers impart to the fibers' lightweight and potential applications in catalysis, electrochemical energy, and gas or liquid separations and storage.  相似文献   

14.
In this paper, the surface properties of polyacrylonitrile‐based carbon fibers is improved by electron‐beam (EB) irradiation in maleic anhydride/acetone solution at 100, 150, 200 and 150 KGy. Experimental study of this paper is carried out to identify surface topography, surface chemical composition and functional groups, adsorption ability and interface properties of CF/epoxy composites. The results reveal that the roughness of carbon fiber surface is increased obviously after modification by EB irradiation grafting technology. The ratio value of O/C and the relative content of oxygen functional groups on fiber surface are improved effectively, comparing with the unmodified carbon fiber. Besides, adsorption of carbon fiber on epoxy and the mechanical performance of CF/epoxy composites are clearly enhanced after irradiation grafting modification. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Atmospheric-plasma fluorination was used to introduce fluorine functionalities onto the surface of carbon fibers without affecting their bulk properties. The interfacial adhesion between atmospheric-plasma-fluorinated carbon fibers and poly(vinylidene fluoride) (PVDF) was studied by means of direct wetting measurements and single fiber pullout tests. Measured contact angles of PVDF melt droplets on modified carbon fibers show that short exposure times of carbon fibers to atmospheric-plasma fluorination (corresponding to a degree of surface fluorination of F/C = 0.01 (1.1%)) leads to improved wettability of the fibers by PVDF melts. The apparent interfacial shear strength as a measure of practical adhesion, determined by the single-fiber pullout test, increases by 65% under optimal treatment conditions. The improved practical adhesion is not due to the formation of transcrystalline regions around the fibers or a change of the bulk matrix crystallinity or to an increased surface roughness; it seems to be due to the compatibilization of the interface caused of the atmospheric-plasma fluorination of the carbon fibers.  相似文献   

16.
Lignocellulosic materials can significantly contribute to the development of composites, since it is possible to chemically and/or physically modify their main components, cellulose, hemicelluloses and lignin. This may result in materials more stable and with more uniform properties. It has previously been shown that chemically modified sisal fibers by ClO(2) oxidation and reaction with FA and PFA presented a thin coating layer of PFA on their surface. FA and PFA were chosen as reagents because these alcohols can be obtained from renewable sources. In the present work, the effects of the polymeric coating layer as coupling agent in phenolic/sisal fibers composites were studied. For a more detailed characterization of the fibers, IGC was used to evaluate the changes that occurred at the sisal fibers surface after the chemical modifications. The dispersive and acid-base properties of untreated and treated sisal fibers surfaces were determined. Biodegradation experiments were also carried out. In a complementary study, another PFA modification was made on sisal fibers, using K2Cr2O(7) as oxidizing agent. In this case the oxidation effects involve mainly the cellulose polymer instead of lignin, as observed when the oxidation was carried out with ClO(2). The SEM images showed that the oxidation of sisal fibers followed by reaction with FA or PFA favored the fiber/phenolic matrix interaction at the interface. However, because the fibers were partially degraded by the chemical treatment, the impact strength of the sisal-reinforced composites decreased. By contrast, the chemical modification of fibers led to an increase of the water diffusion coefficient and to a decrease of the water absorption of the composites reinforced with modified fibers. The latter property is very important for certain applications, such as in the automotive industry.  相似文献   

17.
The effects of carbon blacks, chopped carbon fibers, and crushed carbon fibers on the crosslinking chemistry of a diglycidyl epoxy resin/m-phenylenediamine system were examined by infrared (IR) spectroscopy and differential scanning calorimetry (DSC). The carbon and graphite surfaces were given oxidizing and reducing treatment to simulate the surface treatment of carbon fibers used in the manufacture of composites. The oxidized carbon surfaces initially accelerated epoxy–amine reactions but inhibited the later stages of the reaction such that the final extent of cure was reduced. The oxidized carbons also preferentially adsorbed the amine curing agent, resulting in a stoichiometric imbalance at the interface.  相似文献   

18.
The main purpose of this paper is to report the direct removal of trace ionic iodide (I(-)) from acetic acid through porous carbon spheres (PCS) derived from the carbonization of poly(vinylidene chloride). The surface morphology and pore size distribution of the PCS are distinct from activated carbon (AC); thus they possess the peculiar performance of removing ionic iodide from acetic acid. The easy reach of micropores in the PCS was different from that of AC, but similar to that of activated carbon fiber (ACF). The iodide removal process has a strong relation with temperature, which is a typical feature of physical adsorption. The ionic iodide content in acetic acid used in the adsorption experiment was at the parts per billion level, and the factors influencing the adsorption are discussed in detail.  相似文献   

19.
Polyacrylonitrile (PAN)‐based carbon fibers were electrochemically oxidized in aqueous ammonium bicarbonate with increasing current density. The electrochemical treatment led to significant changes of surface physical properties and chemical structures. The oxidized fibers showed much cleaner surfaces and increased levels of oxygen functionalities. However, it was found that there was no correlation between surface roughness and the fiber/resin bond strength, i.e. mechanical interlocking did not play a major role in fiber/resin adhesion. Increases in surface chemical functionality resulted in improved fiber/resin bonding and increased interlaminar shear strength (ILSS) of carbon fiber reinforced epoxy composites. The relationship between fiber surface functionality and the hydrothermal aging behavior of carbon fiber/epoxy composites was investigated. The existence of free volume resulted from poor wetting of carbon fibers by the epoxy matrix and the interfacial chemical structure were the governing factors in the moisture absorption process of carbon fiber/epoxy composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号