首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Dispersions of carbon blacks and chopped carbon fibers in epoxy resins may be characterized by infrared internal reflection spectroscopy (IR–IRS). The high surface areas of the carbons (often ≥ 100 m2/g) ensure a high degree of interfacial contact between the carbon surface and the polymer. The crosslinking kinetics and final crosslinked state of an anhydride-cured epoxy resin are shown to be affected strongly by the carbons through adsorption of the tertiary amine catalyst at oxidation sites on the carbon surface. Oxidative treatments of the carbons (nitric acid oxidation, air oxidation) increase the effect on the crosslinking chemistry. Carbon dioxide treatment of the carbons, which produces a basic surface, reduces the effect on the crosslinking. The effects on the crosslinking kinetics were confirmed by differential scanning calorimetry (DSC). The relevance of these results to the characterization of the interphase in carbon fiber/epoxy composites is discussed.  相似文献   

2.
The crosslinking chemistry of an anhydride-cured epoxy resin, in the first 200–400 nm adjacent to a carbonized polyacrylonitrile (PAN) surface (a model for the surface of a carbon fiber), is significantly affected by the humidity history of that surface. Prior humid aging of the carbonized PAN surface increases the subsequent rate of consumption of anhydride curing agent, and decreases the yield of ester crosslinked products. The crosslinking chemistry of an amine-cured epoxy resin appears unchanged by the presence of the carbonized surface. Dynamic mechanical analysis (DMA) of unidirectional composites made from carbon fibers and the above epoxy resin matrices shows that the damping characteristics of composites made with an epoxy–anhydride matrix are sensitive to the preconditioning history of the carbon fibers, while composites made with an epoxy–amine matrix are unaffected by the preconditioning history of the fibers. Partial removal of the carbon fiber surface coating by dichloromethane extraction does not change the sensitivity of the composites to fiber preconditioning history. These results are rationalized on the basis of the effect moisture adsorbed by the carbonized PAN and by the carbon fiber has on the epoxy resin crosslinking processes.  相似文献   

3.
Polyacrylonitrile (PAN)‐based carbon fibers were electrochemically oxidized in aqueous ammonium bicarbonate with increasing current density. The electrochemical treatment led to significant changes of surface physical properties and chemical structures. The oxidized fibers showed much cleaner surfaces and increased levels of oxygen functionalities. However, it was found that there was no correlation between surface roughness and the fiber/resin bond strength, i.e. mechanical interlocking did not play a major role in fiber/resin adhesion. Increases in surface chemical functionality resulted in improved fiber/resin bonding and increased interlaminar shear strength (ILSS) of carbon fiber reinforced epoxy composites. The relationship between fiber surface functionality and the hydrothermal aging behavior of carbon fiber/epoxy composites was investigated. The existence of free volume resulted from poor wetting of carbon fibers by the epoxy matrix and the interfacial chemical structure were the governing factors in the moisture absorption process of carbon fiber/epoxy composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Four sorts of epoxy resins containing degradable acetal linkages were synthesized by the reaction of bisphenol A (BA) or cresol novolak (CN) resin with vinyl ethers containing a glycidyl group [4‐vinlyoxybutyl glycidyl ether (VBGE) and cyclohexane dimethanol vinyl glycidyl ether (CHDMVG)] and cured with known typical amine‐curing agents. The thermal and mechanical properties of the cured resins were investigated. Among the four cured epoxy resins, the CN‐CHDMVG resin (derived from CN and CHDMVE) exhibited relatively high glass transition temperature (Tg = ca. 110 °C). The treatment of these cured epoxy resins with aqueous HCl in tetrahydrofuran (THF) at room temperature for 12 h generated BA and CN as degradation main products in high yield. Carbon fiber‐reinforced plastics (CFRPs) were prepared by heating the laminated prepreg sheets with BA‐CHDMVG (derived from BA and CHDMVE) and CN‐CHDMVG, in which strands of carbon fibers are impregnated with the epoxy resins containing conventional curing agents and curing accelerators. The obtained CFRPs showed good appearance and underwent smooth breakdown with the aqueous acid treatment in THF at room temperature for 24 h to produce strands of carbon fiber without damaging their surface conditions and tensile strength. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
This paper discloses a feasible and high efficient strategy for wood fiber treatment to introducing multi‐wall carbon nanotubes (MWCNTs) to the surface of wood fibers for the aim of improving the interfacial shear strength of wood fiber/epoxy composite. Briefly, a layer of MWCNT was deposited on wood fibers through sizing wood fibers with epoxy sizing agent containing amine‐treated MWCNTs (MWCNT‐PEI). The surface functional groups, morphology, wettability, and interphase properties of MWCNTs on the surface of wood fiber were studied. The remarkable enhancements were achieved in interfacial shear strength of reinforced composites by dipping wood fiber in MWCNTCOOH suspension and wood fiber sizing containing MWCNT‐PEI.  相似文献   

6.
The utility of high-strength, high-modulus polyethylene fibers in fiber-reinforced composites is limited due to its poor interfacial adhesion to various polymeric matrices. One way to overcome this limitation is to introduce reactive functionalities on the fiber surface capable of covalently bonding to matrix resins. Ultra high-strength polyethylene (UHSPE) fibers were treated with chlorosulfonic acid. The surface acid groups were found to considerably improve the interfacial adhesion between polyethylene fibers and epoxy resins as shown by the microbond test. These surface functionalities were found to improve the fiber wettability, as shown by contact angle measurements using the Wilhelmy balance method. Colorimetric measurements of methylene blue absorption were used to quantify the surface concentrations of the acid groups. It was possible to functionalize the UHSPE fiber surfaces using this method to obtain fibers that formed a stronger adhesive bond with epoxy resins; this was achievable without sacrificing other fiber mechanical properties.  相似文献   

7.
An amine‐terminated hyperbranched polyimide (HBPI) was prepared by the condensation polymerization of a commercially available triamine monomer with a dianhydride monomer. The effects of the HBPI content on the thermal and mechanical interfacial properties of diglycidyl ether of bisphenol A (DGEBA) epoxy resins were investigated with several techniques. The thermogravimetric analysis results showed that the thermal stability of the DGEBA/HBPI blends did not obviously change as the HBPI content increased. The glass‐transition temperature (Tg) of the DGEBA/HBPI blends increased with the addition of HBPI. Improvements in the critical stress intensity factor (KIC) and impact strength of the blends were observed with the addition of HBPI. The KIC value and impact strength were 2.5 and 2 times the values of the neat epoxy resins with only 4 wt % HBPI. The fractured surfaces were studied with scanning electron microscopy to investigate the morphology of the blends, and they showed that shear deformation occurred to prevent the propagation of cracks in the DGEBA/HBPI blends. These results indicated that a toughness improvement was achieved without a decrease in the thermal stability or Tg. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3348–3356, 2006  相似文献   

8.
Enhancement of thermal properties of epoxy resins was achieved by incorporation of polybenzimidazole (PBI) fibermats filled with carbon nanomaterials, prepared by the solution electrospinning technique. Different type of carbon nanostructures (carbon nanotubes, graphite flakes, graphene nanoplatelets and carbon black) were compared as fillers in polybenzimidazole fibers. The carbon-PBI-fibermats showed remarkable thermal transport properties and therefore, they were studied as thermal reinforcement material for epoxy composites. Mechanical and thermal properties of produced composites were evaluated and the effectiveness of different types of carbon fillers examined. Results showed that the produced carbon filled fibermats can be used effectively as a thermal reinforcing material in epoxy resins, offering several advantages.  相似文献   

9.
Homogeneous and transparent epoxy/amine hybrid resins were successfully obtained through the in situ curing of bisphenol A epoxy and hexakis(methoxymethyl)melamine with 2 wt % (3‐glycidoxypropyl)trimethoxysilane as a facial coupling agent. The hybrid resins showed good miscibility, high glass‐transition temperatures, good thermooxidative stability, and good flame retardance. The outstanding properties of the hybrid resins may lead to their use in high‐performance green electronic products. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1868–1875, 2004  相似文献   

10.
Epoxy resin adhesives are widely used because of their strength, versatility, and ability to bond a variety of substrates. Furfurylamines represent a potential, new class of epoxy curing agents. Furfuryl amine (FA), tetrahydrofurfuryl amine (THFA), and 5,5′-methylenebis-2-furanmethanamine (DFA) were studied as possible epoxy curing agents. The utility of FA and THFA are limited by their volatility at the temperatures needed to effect cure of diglycidyl-ether of bisphenol A (DGEBA) based epoxy resins. DFA is a very effective epoxy curing agent with the ability to cure DGEBA at rates similar to that of standard epoxy curing agents such as liethylenetriamine.  相似文献   

11.
In this study, the reinforcing mechanism of amine functionalized on carbon fibers (CFs) has been precisely discussed, and the differences between aliphatic and aromatic compounds have been illustrated. Polyacrylonitrile‐based CFs were functionalized with ethylenediamine, 4,4‐diaminodiphenyl sulphone, and p‐aminobenzoic acid (PAB), and CF‐reinforced epoxy composites were prepared. The structural and surface characteristics of the functionalized CFs were investigated using X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT‐IR), and scanning electron microscopy (SEM). Mechanical properties in terms of tensile and flexural strengths and moduli were studied. The FT‐IR results confirm the success in bonding amines on the CF surface. After treatment of CFs, the oxygen and nitrogen contents as well as the N/C ratio showed an increase. XPS results provided evidence of the chemical reaction during functionalization, rather than being physically coated on the CF surface. Chemical modification of CF with diamines led to considerable enhancement in compatibility of CF filaments and epoxy resin, and remarkable improvements were seen in both tensile and flexural properties of the reinforced composites. SEM micrographs also confirmed the improvement of interface adhesion between the modified CFs and epoxy matrix. Finally, it can be concluded that PAB is a promising candidate to functionalize CF in order to improve interfacial properties of CF/epoxy composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This article presents the effects of strong ionizing radiations on the physico‐chemical modifications of aliphatic or aromatic amine‐cured epoxy resins based on diglycidyl ether of bisphenol A (DGEBA). Such epoxy resins have a considerable number of applications in the nuclear industrial field and are known to be very stable under moderate irradiation conditions. Using extensively high resolution solid‐state 13C‐NMR spectroscopy we show that the aliphatic amine‐cured resin (DGEBA‐TETA) appears much more sensitive to gamma rays than the aromatic amine‐cured one (DGEBA‐DDM). On the one hand, qualitative analyses of the high resolution solid‐state 13C‐NMR spectra of both epoxy resins, irradiated under similar conditions (8.5 MGy), reveal almost no change in the aromatic amine‐cured resin whereas new resonances are observed for the aliphatic amine‐cured resin. These new peaks were interpreted as the formation of new functional groups such as amides, acids and/or esters and to alkene groups probably formed in the aliphatic amine skeleton. On the other hand, molecular dynamics of these polymers are investigated by measuring the relaxation times, TCH, T1ρH and T1C , before and after irradiation. The study of relaxation data shows the formation, under irradiation, of a more rigid network, especially for the aliphatic amine‐cured system and confirms that aromatic amine‐cured resin [DGEBA‐4,4′‐diaminodiphenylmethane(DDM)] is much less affected by ionizing radiations than the aliphatic amine‐cured resin [DGEBA‐triethylenetetramine(TETA)]. Moreover, it has been shown that the molecular modifications generated by irradiation on the powder of the aliphatic‐amine‐cured resin appear to be homogeneously distributed inside the polymers as no phase separations can be deduced from the above analyses. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Cyanoacetamides are a novel class of curing agents for epoxy resins. Since reaction products of epoxy compounds with cyanoacetamides have not yet been described, we investigated the reaction of phenyl-glycidylether (PGE) and N-isobutylcyanoacetamide (NICA) under the conditions of the epoxy cure (120–150°C). Twenty-two fractions of the reaction product have been separated by preparative TLC and characterized by FD and MS mass spectroscopy. The structures of 10 reaction product have been elucidated by MS, NMR, and IR techniques. They belong to the classes of cyclic urethanes, spiro-dilactones, cyclo-oxa-1-hepten-4-one-2, pyrimidones, aminocrotononitrile, and tertiary amine. This complex model reaction mixture does not enable us to propose a curing mechanism. However practical cure of Bisphenol A diglycidylether (BADGE) yields clear and tough solids with a glass transition temperature up to 200°C, good mechanical strength, and high adhesion to metal surface. Cyanoacetamides are latent hardeners requiring a curing initiator. Since N-4-chlorophenyl-N′-dimethylurea is a latent initiator, liquid, homogeneous, storage stable “one shot” systems can be formulated which harden quickly above 120°C. Heat aging properties of cured specimens are reported. A series of novel liquid, resinous, and crystalline cyanoacetamides and their potential as curing agent are described.  相似文献   

14.
The thermomechanical properties of octafunctional cubic silsesquioxane‐modified epoxy resins associated with dicycloaliphatic hardener (4,4′‐dimethyldiaminodicyclo hexyl methane) were studied using thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. The structures of epoxy resin containing cubic silsesquioxane epoxides were characterized by Fourier transform infrared spectroscopy and wide‐angle X‐ray scattering techniques. In this work, octa(dimethylsiloxybutylepoxide) octasilsesquioxane (OB), and octa(glycidyldimethyl‐siloxyepoxide) octasilsesquioxane (OG), were synthesized and used as additives to improve the properties of a commercial epoxy resin by exploring the effects of varying the ratio of OB or OG. The commercial Ciba epoxy resin (Araldite LY5210/HY2954) was used as a standard. It was found, by thermogravimetric analysis and dynamic mechanical analysis, that the highest thermal stability was observed at N = 0.5 (N = number of amine groups/number of epoxy rings). No glass transition temperature was observed by adding 20 mol % OB to the Ciba epoxy resin, indicating the reduction of chain motion in the presence of octafunctional cubic silsesquioxane epoxide. The storage modulus of the OB‐modified epoxy resin also increased, especially at higher temperatures, compared with the Ciba epoxy resin under identical curing conditions. Fourier transform infrared data elucidated the preservation of cubic silsesquioxane structure after curing at high temperature. In contrast, the OG/Araldite LY5210/HY2954 systems gave poorer thermomechanical properties. The low viscosity of OB at room temperature (~ 350 cPs) makes it suitable for composite processing and, when used in conjunction with the Ciba epoxy, lowers the viscosity of this system as well. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3490–3503, 2004  相似文献   

15.
16.
The kinetics of a poly(methyl methacrylate) (PMMA)-modified epoxy resin cured with different functionalities amine mixtures was analyzed using differential scanning calorimetry (DSC) in both isothermal and dynamic conditions. A delay in the reaction rate was observed which increased with PMMA content. An approach of kinetic features involved in curing was carried out. A linear dependence of preexponential factors of neat systems with modifier content was considered. The approach shows the contribution of other factors including the dilution effect of the functional groups to the observed delay. Fourier transform infrared spectroscopy (FTIR) indicated a noticeable change in the interactions present in neat systems due to the presence of PMMA. On the other hand, a significant influence of the ratio between each amine in the epoxy/amine mixtures on the final physical appearance was observed. At constant curing conditions, materials from completely opaque (phase separated) to transparent (miscible) were obtained with the increase in monoamine content.  相似文献   

17.
The interfacial compatibility of carbon fiber (CF) reinforced composites is the key factor to determine the comprehensive properties of the composites. The sizing agent plays an indispensable role between carbon fibers and matrix resins. Environmentally friendly hydrophilic sizing agent is is a hot research issue to be solved. In this work,the hydrophilic lignin-based sizing agent and carbon fiber reinforced polypropylene (PP) composites are prepared and studied. The lignin is ozonized to increase the reactive group. The obtained lignin reacts with epoxy group to prepare the oxidized organic solvent lignin based epoxy resin(OLBE). OLBE reacts with alcohol amine and carboxylic acid to obtain the hydrophilic lignin-based sizing agent. KH550 is further added to balance the hygroscopicity of sizing agent. Finally,an oxidized organic solvent lignin-based hydrophilic sizing agent(OLBEDK)with excellent stability was prepared. The CF treated with 2. 5% solid content OLBEDK was only 3. 0 mg. The ILSS,Flexural strength,Flexural modulus and Impact strength of CF/PP composites are increased by 50. 8%,34. 2%,53. 7% and 127. 8%, respectively,compared with those of CF/PP composites without sizing. This is attributed to the π-π conjugation between the benzene ring of lignin and the carbon six-membered ring of CF,and the physical entanglement between the alkyl chain of KH550 and the molecular chain of PP,which enhances the interfacial interaction between CF and PP effectively. © 2022, Science Press (China). All rights reserved.  相似文献   

18.
Reaction mechanism of the PC–epoxy blends cured by aliphatic amine has been investigated by varying PC contents in the blends. The transamidation reaction tends to convert nearly all the carbonates into N-aliphatic aromatic carbamates even at ambient temperature before normal curing. The remaining amine proceeds the normal curing with epoxy at a higher temperature (80°C). For the PC–epoxy/aliphatic amine blend containing 6 wt % PC, the yielded N-aliphatic aromatic carbamate further reacts with amine to produce the urea structure. The urea undergoes substitution reaction with the hydroxyl formed from the normal curing to give the N-aliphatic aliphatic carbamate. For the blend containing 12 wt % PC, the N-aliphatic aromatic carbamate converts into the N-aliphatic aliphatic carbamate via two different routes. For the blend containing lower molecular weight of the aliphatic amine, the N-aliphatic aromatic carbamate reacts with hydroxyl to form the N-aliphatic aliphatic carbamate directly. For the blend containing higher molecular weight of aliphatic amine, the N-aliphatic aromatic carbamate decomposes into the aliphatic isocyanate accelerated by the presence of the residual oxirane. The isocyanate formed then reacts with hydroxyl to yield the N-aliphatic aliphatic carbamate. The activation energy (Ea) and preexponential factor (A) of the PC–epoxy/POPDA blends decrease with the increase of the PC content. Kinetic study by thermal analysis by the method of autocatalyzed model is able to correctly predict oxirane conversion vs. time relationship for the neat epoxy/aliphatic amine and the PC–epoxy/aromatic amine systems because the dominant reaction is the normal curing reaction between amine and oxirane. The model fails to predict the PC–epoxy/aliphatic amine system because the system is complicated by several other reactions besides the normal curing reaction. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2169–2181, 1997  相似文献   

19.
Epoxy–amine networks are known to be homogeneous. However, using new analysis tools that allow the observation scale to be reduced to a nanometric level, some authors have stated the opposite. In this work, the network morphology has been studied with atomic force microscopy in the tapping mode as a function of the hardener nature and the stoichiometry of the reactive blend. A very homogeneous epoxy network topography, similar to that of an amorphous thermoplastic, has been obtained. For comparison, a truly heterogeneous network topography, like that of unsaturated thermosets cured by free‐radical mechanisms, has been imaged. For the observation of surfaces on a scale smaller than a nanometer, caution must be taken:(1) the tips must be freshly cleaned so that distortion on the image is prevented and (2) the surfaces must be very flat so that the phase contrast is not influenced significantly by differences in the sample topography. This works gives guidelines on using atomic force microscopy in the tapping mode for epoxy–amine network characterization and discusses epoxy–amine network homogeneity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2422–2432, 2003  相似文献   

20.
In this work, a new method based on nanoscaled Ni-P alloy coating on carbon fiber surfaces is proposed for the improvement of interfacial properties between fibers and epoxy matrix in a composite system. Fiber surfaces and the mechanical interfacial properties of composites were characterized by atomic absorption spectrophotometer (AAS), scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), interlaminar shear strength (ILSS), and impact strength. Experimental results showed that the O(1s)/C(1s) ratio or Ni and P amounts had been increased as the electroless nickel plating proceeded; the ILSS had also been slightly improved. The impact properties were significantly improved in the presence of Ni-P alloy on carbon fiber surfaces, increasing the ductility of the composites. This was probably due to the effect of substituted Ni-P alloy, leading to an increase of the resistance to the deformation and the crack initiation of the epoxy system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号