首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Aristolochic acids (AAs) are a mixture of structural-related compounds, in which aristolochic acid I (AA I) and aristolochic acid II (AA II) are reported to be correlated with Aristolochic acid nephropathy (AAN). In this work, a rapid and sensitive ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to determine AA I and AA II in herbal products and biological fluids. By using gradient elution with a mobile phase composed of a mixture of 10 mM ammonium formate buffer (pH 3.0) and acetonitrile, AAs could be determined within 10 min. Under optimum UHPLC-MS/MS conditions, the limit of detections was 0.14 and 0.26 ng mL−1 for AA I and AA II, respectively. Run-to-run repeatability and intermediate precision of peak area for AA I and AA II were less than 5.74% relative standard deviation (RSD). Accuracy was tested by spiking 10, 100 and 1000 ng mL−1 in rat serum and the recoveries were within 76.5-92.9%. Matrix effects were within 78.8-127.7%. The developed method was successfully applied to determine AA I and AA II in several herbal products and to investigate their pharmacokinetic behavior in female Wister rats. The result shows that the developed UHPLC-MS/MS method is efficient, sensitive, and accurate for the determination of AA I and AA II in herbal products and biological samples.  相似文献   

2.
LC‐MS/MS is currently the most selective and efficient tool for the quantitative analysis of drugs and metabolites in the pharmaceutical industry and in clinical assays. However, phase II metabolites sometimes negatively affect the selectivity and efficiency of the LC‐MS/MS method, especially for the metabolites that possess similar physicochemical characteristics and generate the same precursor ions as their parent compounds due to the in‐source collision‐induced dissociation during the ionization process. This paper proposes some strategies for examining co‐eluting metabolites existing in real samples, and further assuring whether these metabolites could affect the selectivity and accuracy of the analytical methods. Strategies using precursor‐ion scans and product‐ion scans were applied in this study. An example drug, namely, caffeic acid phenethyl ester, which can generate many endogenous phase II metabolites, was selected to conduct this work. These metabolites, generated during the in vivo metabolic processes, can be in‐source‐dissociated to the precursor ions of their parent compounds. If these metabolites are not separated from their parent compounds, the quantification of the target analytes (parent compounds) would be influenced. Some metabolites were eluted closely to caffeic acid phenethyl ester on LC columns, although long columns and relatively long elution programs were used. The strategies can be utilized in quantitative methodologies that apply LC‐MS/MS to assure the performance of selectivity, thus enhancing the reliability of the experimental data.  相似文献   

3.
Studies are described on the phase I and II metabolism and the toxicological analysis of the piperazine-derived designer drug 1-(3-trifluoromethylphenyl)piperazine (TFMPP) in rat urine using gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS). The identified metabolites indicated that TFMPP was extensively metabolized, mainly by hydroxylation of the aromatic ring and by degradation of the piperazine moiety to N-(3-trifluoromethylphenyl)ethylenediamine, N-(hydroxy-3-trifluoromethylphenyl)ethylenediamine, 3-trifluoromethylaniline, and hydroxy-3-trifluoromethylaniline. Phase II reactions included glucuronidation, sulfatation and acetylation of phase I metabolites. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of TFMPP and its above-mentioned metabolites in rat urine after single administration of a dose calculated from the doses commonly taken by drug users. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of TFMPP in human urine.  相似文献   

4.
The toxic effects of oral administrations of nephrotoxic and carcinogenic aristolochic acid (AA) to male Sprague-Dawley rats were investigated by using high-performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometer. Analysis of the urine and plasma samples revealed distinct changes in the biochemical patterns in the AA-dosed rats. After peak finding and alignment, principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were used for multivariate data analysis. Potential biomarkers were studied by high-resolution mass spectrometry (MS) and tandem mass spectrometry (MS/MS) analyses. The MS/MS spectra of all endogenous metabolites satisfying the pre-defined criteria were acquired in a single information-dependent acquisition (IDA) analysis, demonstrating that IDA was an efficient approach for structural elucidation in metabonomic studies. Citric acid and a glucuronide-containing metabolite were observed as potential biomarkers in rat urine. A significant increase in plasma creatinine concentration was also observed in the AA-dosed rats, which indicated that AA induced an adverse effect on the renal clearance function.  相似文献   

5.
Biotransformation products of two potential antineoplastic agents, benfluron and dimefluron, are characterized using our integrated approach based on the combination of high-performance liquid chromatography (HPLC) separation of phase I and phase II metabolites followed by photodiode-array UV detection and electrospray ionization tandem mass spectrometry (MS/MS). High mass accuracy measurement allows confirmation of an elemental composition and metabolic reactions according to exact mass defects. The combination of different HPLC/MS/MS scans, such as reconstructed ion current chromatograms, constant neutral loss chromatograms or exact mass filtration, helps the unambiguous detection of low abundance metabolites. The arene oxidation, N-oxidation, N-demethylation, O-demethylation, carbonyl reduction, glucuronidation and sulfation are typical mechanisms of the metabolite formation. The interpretation of their tandem mass spectra enables the distinction of demethylation position (N- vs. O-) as well as to differentiate N-oxidation from arene oxidation for both phase I and phase II metabolites. Two metabolic pathways are rather unusual for rat samples, i.e., glucosylation and double glucuronidation. The formation of metabolites that lead to a significant change in the chromophoric system of studied compounds, such as the reduction of carbonyl group in 7H-benzo[c]fluorene-7-one chromophore, is reflected in their UV spectra, which provides valuable complementary information to MS/MS data.  相似文献   

6.
Polyphyllin I (PPI), a natural steroidal saponin originating from rihzome of Paris polyphylla , is a potential anticancer candidate. Previous pharmacokinetics study showed that the oral bioavailability of PPI was very low, which suggested that certain amount of PPI might be metabolized in vivo . However, to date, information regarding the final metabolic fates of PPI is very limited. In this study, metabolites of PPI and their pharmacokinetics in rats were investigated using UPLC‐QTOF‐MS/MS and LC‐TQ‐MS/MS. A total of seven putative metabolites, including six phase I and one phase II metabolites, were detected and identified with three exact structures by comparison with authentic standards for the first time. Oxidation, deglycosylation and glucuronidation were found to be the major metabolic processes of the compound in rats. The pharmacokinetics of prosapogenin A, trillin and diosgenin, three deglycosylation metabolites of PPI with definite anticancer effects, were further studied, which suggested that the metabolites underwent a prolonged absorption and slower elimination after intragastric administration of PPI at the dose of 500 mg/kg. This study provides valuable and new information on the metabolic fate of PPI, which will be helpful in further understanding its mechanism of action.  相似文献   

7.
汪永忠  柳清  姜辉  韩燕全  李钰馨 《色谱》2016,34(6):602-607
采用弗氏完全佐剂(FCA)诱导佐剂性关节炎(AA)大鼠模型,观察大鼠足趾肿胀度和踝关节组织的病理学形态变化。应用气相色谱-飞行时间质谱(GC-TOF MS)技术检测AA大鼠尿液代谢物谱,并对数据进行主成分分析(PCA)、偏最小二乘法-判别分析(PLS-DA)及正交偏最小二乘法-判别分析(OPLS-DA),探讨可能的发病机制。通过变量重要性投影值(VIP>1)和P值(<0.05),筛选出尿液中的差异代谢物。在模型组大鼠的尿液中共发现异柠檬酸、α-酮戊二酸、柠康酸、肌酸、3-羟基丁酸等20种差异代谢物。推断AA代谢组学的发病机制可能与能量代谢、氨基酸代谢、脂肪酸代谢途径有关。  相似文献   

8.
Artemisinin drugs have become the first‐line antimalarials in areas of multi‐drug resistance. However, monotherapy with artemisinin drugs results in comparatively high recrudescence rates. Autoinduction of CYP‐mediated metabolism, resulting in reduced exposure, has been supposed to be the underlying mechanism. To better understand the autoinduction of artemisinin drugs, we evaluated the biotransformation of artemisinin, also known as Qing‐hao‐su (QHS), and its active derivative dihydroartemisinin (DHA) in vitro and in vivo, using LTQ‐Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange high‐resolution (HR)‐LC/MS (mass spectrometry) for rapid structural characterization. The LC separation was improved allowing the separation of QHS parent drugs and their metabolites from their diastereomers. Thirteen phase I metabolites of QHS have been identified in liver microsomal incubates, rat urine, bile and plasma, including six deoxyhydroxylated metabolites, five hydroxylated metabolites, one dihydroxylated metabolite and deoxyartemisinin. Twelve phase II metabolites of QHS were detected in rat bile, urine and plasma. DHA underwent similar metabolic pathways, and 13 phase I metabolites and 3 phase II metabolites were detected. Accurate mass data were obtained in both full‐scan and MS/MS mode to support assignments of metabolite structures. Online H/D exchange LC‐HR/MS experiments provided additional evidence in differentiating deoxydihydroxylated metabolites from mono‐hydroxylated metabolites. The results showed that the main phase I metabolites of artemisinin drugs are hydroxylated and deoxyl products, and they will undergo subsequent phase II glucuronidation processes. This study also demonstrated the effectiveness of online H/D exchange LC‐HR/MSn technique in rapid identification of drug metabolites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Icotinib, 4-[(3-ethynylphenyl)amino]-6,7-benzo-12-crown-4-quinazoline, is a new antitumor agent. The metabolic pathway of icotinib in rats was studied using liquid chromatography/tandem mass spectrometry (LC/MS(n)) analysis. Full scan and selected ion monitoring modes were used to profile the possible metabolites of icotinib in rat urine, feces and bile samples. Four phase I metabolites (M1-M4) and two phase II metabolites (M5, M6) were detected and characterized. Multiple-stage mass spectrometry and nuclear magnetic resonance (NMR) spectrometry were employed to elucidate structures of metabolites. Icotinib was metabolized to open the crown ether ring to form the main phase I metabolites. During metabolism, a reactive metabolite was formed. Using semicarbazide as a trapping agent, an intermediate arising from opening of the crown ether ring was detected as an aldehyde product by LC/MS/MS. These data indicated that ring opening of the crown ether was triggered by hydroxylation at the 8'-position of the ring to form a hemiacetal intermediate, which was further oxidized or reduced. Finally, the metabolic pathway of icotinib in rats was proposed.  相似文献   

10.
Isopropyl 3‐(3,4‐dihydroxyphenyl)‐2‐hydroxypropanoate (IDHP) is an investigational new drug having the capacity for treating ailments in the cardiovascular and cerebrovascular system. In this work, a rapid and sensitive method using high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (HPLC‐ESI‐Q‐TOF‐MS) was developed to reveal the metabolic profile of IDHP in rats after oral administration. The method involved pretreatment of the samples by formic acid–methanol solution (v/v, 5:95), chromatographic separation by an Agilent Eclipse XDB‐C18 column (150 × 4.6 mm i.dx., 5 μm) and online identification of the metabolites by Q‐TOF‐MS equipped with electrospray ionizer. A total of 16 metabolites from IDHP, including four phase I metabolites and 12 phase II metabolites, were detected and tentatively identified from rat plasma, urine and feces. Among these metabolites, Danshensu (DSS), a hydrolysis product of IDHP, could be further transformed to 11 metabolites. These results indicated that DSS was the main metabolite of IDHP in rats and the major metabolic pathways of IDHP in vivo were hydrolysis, O‐methylation, sulfation, glucuronidation and reduction. The results also demonstrated that renal route was the main pathway of IDHP clearance in rat. The present study provided valuable information for better understanding the efficacy and safety of IDHP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Triclosan is a widely used broad‐spectrum antibacterial agent that acts by specifically inhibiting enoyl–acyl carrier protein reductase. An in vitro metabolic study of triclosan was performed by using Sprague‐Dawley (SD) rat liver S9 and microsome, while the in vivo metabolism was investigated on SD rats. Twelve metabolites were identified by using in‐source fragmentation from high‐performance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometry (HPLC/APCI‐ITMS) analysis. Compared to electrospray ionization mass spectrometry (ESI‐MS) and tandem mass spectrometry (MS/MS) that gave little fragmentation for triclosan and its metabolites, the in‐source fragmentation under APCI provided intensive fragmentations for the structural identifications. The in vitro metabolic rate of triclosan was quantitatively determined by using HPLC/ESI‐ITMS with the monitoring of the selected triclosan molecular ion. The metabolism results indicated that glucuronidation and sulfonation were the major pathways of phase II metabolism and the hydroxylated products were the major phase I metabolites. Moreover, glucose, mercapturic acid and cysteine conjugates of triclosan were also observed in the urine samples of rats orally administrated with triclosan. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Silodosin (SLD) is a novel α1‐adrenoceptor antagonist which has shown promising clinical efficacy and safety in patients with benign prostatic hyperplasia (BPH). However, lack of information about metabolism of SLD prompted us to investigate metabolic fate of SLD in rats. To identify in vivo metabolites of SLD, urine, feces and plasma were collected from Sprague–Dawley rats after its oral administration. The samples were prepared using an optimized sample preparation approach involving protein precipitation followed by solid‐phase extraction and then subjected to LC/HR‐MS/MS analysis. A total of 13 phase I and six phase II metabolites of SLD have been identified in rat urine which includes hydroxylated, N‐dealkylated, dehydrogenated, oxidative, glucosylated, glucuronide and N‐sulphated metabolites, which are also observed in feces. In plasma, only dehydrogenated, N‐dealkylated and unchanged SLD are observed. The structure elucidation of metabolites was done by fragmentation in MS/MS in combination with HRMS data. The potential toxicity profile of SLD and its metabolites were predicted using TOPKAT software and most of the metabolites were proposed to show a certain degree of skin sensitization and occular irritancy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Mitragyna speciosa (Kratom in Thai), a Thai medical plant, is misused as herbal drug of abuse. Besides the most abundant alkaloids mitragynine (MG) and paynantheine (PAY), several other alkaloids were isolated from Kratom leaves, among them the third abundant alkaloid is speciogynine (SG), a diastereomer of MG. The aim of this present study was to identify the phase I and II metabolites of SG in rat urine after the administration of a rather high dose of the pure alkaloid and then to confirm these findings using human urine samples after Kratom use. The applied liquid chromatography coupled to low- and high-resolution mass spectrometry (LC-HRMS-MS) provided detailed information on the structure in the MS(n) mode particularly with high resolution. For the analysis of the human samples, the LC separation had to be improved markedly allowing the separation of SG and its metabolites from its diastereomer MG and its metabolites. In analogy to MG, besides SG, nine phase I and eight phase II metabolites could be identified in rat urine, but only three phase I and five phase II metabolites in human urine. These differences may be caused by the lower SG dose applied by the user of Kratom preparations. SG and its metabolites could be differentiated in the human samples from the diastereomeric MG and its metabolites comparing the different retention times determined after application of the single alkaloids to rats. In addition, some differences in MS(2) and/or MS(3) spectra of the corresponding diastereomers were observed.  相似文献   

14.
In vivo metabolites of ketorolac (KTC) have been identified and characterized by using liquid chromatography positive ion electrospray ionization high resolution tandem mass spectrometry (LC/ESI‐HR‐MS/MS) in combination with online hydrogen/deuterium exchange (HDX) experiments. To identify in vivo metabolites, blood urine and feces samples were collected after oral administration of KTC to Sprague–Dawley rats. The samples were prepared using an optimized sample preparation approach involving protein precipitation and freeze liquid separation followed by solid‐phase extraction and then subjected to LC/HR‐MS/MS analysis. A total of 12 metabolites have been identified in urine samples including hydroxy and glucuronide metabolites, which are also observed in plasma samples. In feces, only O‐sulfate metabolite and unchanged KTC are observed. The structures of metabolites were elucidated using LC‐MS/MS and MSn experiments combined with accurate mass measurements. Online HDX experiments have been used to support the structural characterization of drug metabolites. The main phase I metabolites of KTC are hydroxylated and decarbonylated metabolites, which undergo subsequent phase II glucuronidation pathways. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The metabolism of the anti-inflammatory drug Celecoxib in rabbits was characterized using liquid chromatography (LC)/tandem mass spectrometry (MS/MS) with precursor ion and constant neutral loss scans followed by product ion scans. After separation by on-line liquid chromatography, the crude urine samples and plasma and fecal extracts were analyzed with turbo-ionspray ionization in negative ion mode using a precursor ion scan of m/z 69 (CF(3)) and a neutral loss scan of 176 (dehydroglucuronic acid). The subsequent product ion scans of the [M - H] ions of these metabolites yielded the identification of three phase I and four phase II metabolites. The phase I metabolites had hydroxylations at the methyl group or on the phenyl ring of Celecoxib, and the subsequent oxidation product of the hydroxymethyl metabolite formed the carboxylic acid metabolite. The phase II metabolites included four positional isomers of acyl glucuronide conjugates of the carboxylic acid metabolite. These positional isomers were caused by the alkaline pH of the rabbit urine and were not found in rabbit plasma. The chemical structures of the metabolites were characterized by interpretation of their product ion spectra and comparison of their LC retention times and the product ion spectra with those of the authentic synthesized standards.  相似文献   

16.
In this study, a specific and quick ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was fully developed and validated for simultaneous measurement of the rat plasma levels of vortioxetine (VOR), Lu AA34443 (the major metabolite of VOR), fluoxetine and its metabolite norfluoxetine with diazepam as the internal standard (IS). After a simple protein precipitation with acetonitrile for sample preparation, the separation of the analytes were performed on an Acquity UPLC BEH C18 (2.1 × 50 mm, 1.7 μm) column, with acetonitrile and 0.1% formic acid in water as mobile phase by gradient elution. The detection was achieved on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via an electrospray ionization source. Good linearity was observed in the calibration curve for each analyte. The data of precision, accuracy, matrix effect, recovery and stability all conformed to the bioanalytical method validation of acceptance criteria of US Food and Drug Administration recommendations. The newly developed UPLC–MS/MS method allowed simultaneous quantification of VOR, fluoxetine and their metabolites for the first time and was successfully applied to a pharmacokinetic study in rats.  相似文献   

17.
Febuxostat is a novel nonpurine type of highly selective xanthine oxidoreductase inhibitor. A rapid and sensitive ultra‐high‐performance liquid chromatography–quadrupole time‐of‐flight mass spectrometry method for simultaneous separation and determination of febuxostat and its metabolites in rat serum and urine was developed at various time points after oral administration to the rats. The febuxostat metabolites were predicted by biotransformation software and transformed to a personal compound database to quickly determine the possible metabolites from the MS1 data. The possibility of the MS/MS fragmentation was calculated by the Molecular Structure Correlator software. As a result, five phase I and two phase II metabolites in rat serum, and seven phase I and three phase II metabolites in rat urine were identified, of which four metabolites (M2, M5, M6, M7) have not been reported before. The metabolite toxicities are predicted, and the results are helpful for the design of new xanthine oxidoreductase inhibitors.  相似文献   

18.
Polarity switching mass spectrometry is an efficient way to collect structural data on drug metabolites. The value of this approach is illustrated with the in vitro metabolism of RO9237. Metabolites are identified by positive and negative electrospray ionization (ESI) full scan mass spectrometry, MS/MS and MS(3) using unlabelled and (14)C-radiolabelled versions of the drug. Comparison of the relative detectability of these metabolites by +ESI and -ESI shows that neither ESI mode is universal. It is advantageous to screen for metabolites using both positive and negative ionization modes. This is especially true for phase II metabolism which tends to make molecules more polar and often more acidic. Identification of phase II metabolites also benefits greatly from MS(3) experiments because the conjugating groups typically are cleaved in MS/MS and information on the core structure is only obtained in MS(3). A special case of phase II metabolism is the generation of glutathione (GSH) conjugates from reactive metabolites. The detection of GSH conjugates also benefits from generating both positive and negative ESI mass spectral data.  相似文献   

19.
In addition to matrix effects, common interferences observed in liquid chromatography/tandem mass spectrometry (LC/MS/MS) analyses can be caused by the response of drug-related metabolites to the multiple reaction monitoring (MRM) channel of a given drug, as a result of in-source reactions or decomposition of either phase I or II metabolites. However, it has been largely ignored that, for some drugs, metabolism can lead to the formation of isobaric or isomeric metabolites that exhibit the same MRM transitions as parent drugs. The present study describes two examples demonstrating that interference caused by isobaric or isomeric metabolites is a practical issue in analyzing biological samples by LC/MS/MS. In the first case, two sequential metabolic reactions, demethylation followed by oxidation of a primary alcohol moiety to a carboxylic acid, produced an isobaric metabolite that exhibits a MRM transition identical to the parent drug. Because the drug compound was rapidly metabolized in rats and completely disappeared in plasma samples, the isobaric metabolite appeared as a single peak in the total ion current (TIC) trace and could easily be quantified as the drug since it was eluted at a retention time very close to that of the drug in a 12-min LC run. In the second example, metabolism via the ring-opening of a substituted isoxazole moiety led to the formation of an isomeric product that showed an almost identical collision-induced dissociation (CID) MS spectrum as the original drug. Because two components were co-eluted, the isomeric product could be mistakenly quantified and reported by data processing software as the parent drug if the TIC trace was not carefully inspected. Nowadays, all LC/MS data are processed by computer software in a highly automated fashion, and some analysts may spend much less time to visually examine raw TIC traces than they used to do. Two examples described in this article remind us that quality data require both adequate chromatographic separations and close examination of raw data in LC/MS/MS analyses of drugs in biological matrix.  相似文献   

20.
Chromatographic analyses play an important role in the identification and determination of phase I and phase II drug metabolites. While the chemical standards of phase I metabolites are usually available from commercial sources or by various synthetic, degradation or isolation methods, the phase II drug metabolites have usually more complicated structures, their standards are in general inaccessible and their identification and determination require a comprehensive analytical approach involving the use of xenobiochemical methods and the employment of hyphenated analytical techniques. In this work, various high-performance liquid chromatography (HPLC) methods were employed in the evaluation of xenobiochemical experiments leading to the identification and determination of phase II nabumetone metabolites. Optimal conditions for the quantitative enzymatic deconjugation of phase II metabolites were found for the samples of minipig bile, small intestine contents and urine. Comparative HPLC analyses of the samples of above-mentioned biomatrices and of the same biomatrices after their enzymatic treatment using beta-glucuronidase and arylsulfatase afforded the qualitative and quantitative information about phase II nabumetone metabolites. Hereby, three principal phase II nabumetone metabolites (ether glucuronides) were discovered in minipig's body fluids and their structures were confirmed using liquid chromatography (LC)-electrospray ionization mass spectrometric (MS) analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号