首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A series of SBA-15 supported bimetallic Rh–Ni catalysts with different weight ratio of Rh/Ni in the range of 0–0.04 were prepared for carbon dioxide reforming of methane. The doping effect of Rh on catalytic activity as well as carbon accumulation and removal over the catalysts was studied. The characterization results indicated that the addition of a small amount of Rh promoted the reducibility of Ni particles and decreased the Ni particle size. During the dry reforming reaction, the carbon deposition was originated from CH4 decomposition and CO disproportionation. The Rh–Ni catalyst with small metallic particle size inhibited the carbon formation and exhibited high efficiency in the removal of coke. In comparison with bare Ni-based catalyst, the Rh–Ni bimetallic catalysts showed high activity and stability in the dry reforming of methane.  相似文献   

2.
The Catalytic performances for methane steam reforming reaction ofNi/Al_2O_3(commercial), Ni/Al_2O_3 (developed surface )and Ni/Al_2O_3-R_xO_y (R israre earth oxide) Catalysts were investigated by means of X-ray diffraction,TG, SEM/ X-ray analysis, pulse gas chromatography,BET and Mercuryporsiniter techniques. The distribution of rear earth oxides on the supports,themetal-support (additives) interaction and the influence of rare earth oxideadditives on the dispersion of active components,catulytic activities,variationof nickel crystallites size,CO chemisorption,formation of NiAl_2O_4 as well asthe reducibility of the catalysts were examined.The presence of rare earthoxides in the Ni/Al_2O_3 (developed surface) results in great improvement ofstubility through suppressing the growth of Ni crystallites,the oxidation of themetallic Ni and the formation of NiAl_2O_4. The effect of heavy rare earth oxidesis more distinct than that of the light ones.Strong metal support interaction(SMSI) exists in Ni/Al_2O_3- R  相似文献   

3.
Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were performed upon wide ranges of pressure (1-25 atm), temperature (600-1300 K), carbon dioxide to methane ratio (0-2) and oxygen to methane ratio (0-1). The thermodynamic results were compared with the results obtained over a Ru supported catalyst. The results revealed that by increasing the reaction pressure methane conversion decreased. Also it was found that the atmospheric pressure is the preferable pressure for both dry reforming and partial oxidation of methane and increasing the temperature caused increases in both activity of carbon and conversion of methane. The results clearly showed that the addition of O 2 to the feed mixture could lead to a reduction of carbon deposition.  相似文献   

4.
The decomposition and CO2 reforming of methane,respectively,are promising alternatives to industrial steam methane reforming. In recent years,research has been focused on the development of catalysts that can operate without getting deactivated by carbon deposition,where,in particular,carbon catalysts have shown positive results. In this work,the role of carbon materials in heterogeneous catalysis is assessed and publications on methane decomposition and CO2 reforming of methane over carbon materials are reviewed. The influence of textural properties(BET surface area and micropore volume,etc.) and oxygen surface groups on the catalytic activity of carbon materials are discussed. In addition,this review examines how activated carbon and carbon black catalysts,which are the most commonly used carbon catalysts,are deactivated. Characteristics of the carbon deposits from methane are discussed and the influence of the reactivity to CO2 of fresh carbon and carbonaceous deposits for high and steady conversion during CO2 reforming of CH4 are also considered.  相似文献   

5.
The effects of carbon dioxide content on the catalytic performance and coke formation of nickel catalyst supported on mesoporous nanocrystalline zirconia with high surface area and pure tetragonal crystalline phase were investigated in methane reforming with carbon dioxide. The samples were characterized by XRD, BET, TPR, TPO, TPH, TEM, and SEM techniques. The catalyst prepared showed high surface area and a mesoporous structure with a narrow pore size distribution. The obtained results revealed that the increase in CO2 content increased the methane conversion and stability of the catalyst and significantly reduced the coke deposition. The TPH analysis showed that several species of carbon with different reactivities toward hydrogenation were deposited on the spent catalysts employed under different CO2 contents.  相似文献   

6.
The use of steel-making slag as catalysts for microwave-assisted dry reforming of CH4 was studied. Two carbon materials (an activated carbon and a metallurgical coke), mixtures of the carbon materials and Fe-rich slag, and mixtures of the carbon materials and Ni/Al2O3 were tested as catalysts. The mixtures of slag with carbons gave rise to higher and steadier conversions than those achieved over the carbon materials alone. In addition, the use of the metallurgical coke mixed with metal-rich catalysts gave rise to remarkable results. Thus, no CH4 and CO2 conversions were achieved when coke was used alone, whereas high conversions were obtained when it was mixed with the metal-rich catalysts.  相似文献   

7.
The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalyst were extensively investigated by TPSR and TPD experiments. It showed that the decomposition of methane results in the formation of at least three kinds of surface carbon species on supported nickel catalyst, while CO2 adsorbed on the catalyst weakly and only existed in one kind of adsorption state. Then the mechanism of interaction between the species dissociated from CH4 and CO2 during reforming was proposed.  相似文献   

8.
Nanostructured γ-Al2O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, N2adsorption-desorption,TPR, TPO, TPH, NH3-TPD and SEM techniques. The BET analysis showed a high surface area of 204 m2 g-1and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The BET results revealed that addition of lanthanum oxide to aluminum oxide decreased the specific surface area. In addition, TPR results showed that addition of lanthanum oxide increased the reducibility of nickel catalyst. The catalytic evaluation results showed an increase in methane conversion with increasing lanthanum oxide to 3 mol% and further increase in lanthanum content decreased the catalytic activity. TPO analysis revealed that the coke deposition decreased with increasing lanthanum oxide to 3 mol%. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Addition of steam and O2 to dry reforming feed increased the methane conversion and led to carbon free operation in combined processes.  相似文献   

9.
The kinetics of the catalytic reforming reaction of methane with carbon dioxide to produce synthesis gas on a Ni/(α-A1203 and a HSD-2 type commercial catalyst has been studied. The results indicate that the reaction orders are one and zero for methane and carbon dioxide, respectively, when the carbon dioxide partial pressure was about 12.5-30.0 kPa and the temperature was at 1123-1173 K. However, when the carbon dioxide partial pressure was changed to 30.0-45.0 kPa under the same temperature range of 1123-1173 K, the reaction orders of methane and carbon dioxide are one. Furthermore, average rate constants at different temperatures were determined.  相似文献   

10.
The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalysts were extensively investigated by TPSR, TPD, XPS and pulse reaction methods. These studies showed that the decomposition of methane results in the formation of at least three kinds of surface carbon species on supported nickel catalysts. Carbidic Cα, carbonaceous Cβ and carbidic clusters Cγ surface carbon species formed by the decomposition of methane demonstrated different surface mobility, thermal stability and reactivity. Carbidic Cα is a very active and important intermediate in carbon dioxide reforming with methane, and the carbidic clusters Cγ species might be the precursor of surface carbon deposition. The partially dehydrogenated Cβ species can react with H2 or CO2 to form CH4 or CO. On the other hand, it was proven that CO2 can be weakly adsorbed on supported nickel catalysts, and only one kind of CO2 adsorption state is formed. The interaction mechanism between the species dissociated from CH4 and CO2 during reforming was then hypothesized.  相似文献   

11.
The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalysts were extensively investigated by TPSR, TPD, XPS and pulse reaction methods. These studies showed that the decomposition of methane results in the formation of at least three kinds of surface carbon species on supported nickel catalysts. Carbidic Cα, carbonaceous Cβ and carbidic clusters C-γ surface carbon species formed by the decomposition of methane demonstrated different surface mobility, thermal stability and reactivity. Carbidic Cα is a very active and important intermediate in carbon dioxide reforming with methane, and the carbidic clusters Cγ species might be the precursor of surface carbon deposition. The partially dehydrogenated Cβ species can react with H2 or CO2 to form CH4 or CO. On the other hand, it was proven that CO2 can be weakly adsorbed on supported nickel catalysts, and only one kind of CO2 adsorption state is formed. The interaction mechanism between the species dissociated from CH4  相似文献   

12.
A series of Ni/La2Zr2O7 pyrochlore catalysts prepared by impregnation method and treated by dielectric barrier discharge(DBD) plasma in different atmospheres and varied sequences were prepared and applied for dry reforming of methane(DRM). It is found that all of the plasma treated catalysts show evidently improved activity and coke resistance in comparison with the non-plasma treated one. The best performance is achieved on Ni/La2Zr2O7–H2P–C,a catalyst treated in H2 plasma before calcination. TGA-DSC and SEM demonstrate that carbon deposition is significantly suppressed on all of the plasma treated samples. Moreover,XRD and TEM results testify that both Ni O and Ni sizes on the calcined and reduced samples treated by plasma are also decreased,which results in higher Ni metal dispersion on the reduced and used catalysts and enhances the interactions between Ni sites and the support. It is believed that these are the inherent reasons accounting for the promotional effects of plasma treatment on the reaction performance of the Ni/La2Zr2O7 pyrochlore catalysts.  相似文献   

13.
MgO-modified Ni/Al2O3 catalysts with different Ni loadings were prepared and employed in dry reforming of methane (DRM). The effect of Ni loadings on the activity and coke formation of Ni/MgO-A1203 catalysts were investigated. The synthesized catalysts were characterized by XRD, N2 adsorption-desorption, SEM, TPO and TPR techniques. The obtained results showed that increasing nickel loading decreased the BET surface area and increased the catalytic activity and amount of deposited carbon. In addition, the effect of gas hourly space velocity (GHSV) and feed ratio were studied.  相似文献   

14.
Nanostructured -y-A12O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, N2 adsorption-desorption, TPR, TPO, TPH, NH3-TPD and SEM techniques. The BET analysis showed a high surface area of 204 m2.g-1 and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The BET results revealed that addition of lanthanum oxide to aluminum oxide decreased the specific surface area. In addition, TPR results showed that addition of lanthanum oxide increased the reducibility of nickel catalyst. The catalytic evaluation results showed an increase in methane conversion with increasing lanthanum oxide to 3 mol% and further increase in lanthanum content decreased the catalytic activity. TPO analysis revealed that the coke deposition decreased with increasing lanthanum oxide to 3 mol%. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Addition of steam and Oxide to drv reformin feed increased the methane conversion and led to carbon free ooeration in combined orocesses.  相似文献   

15.
The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al_2O_3 and γ-Al_2O_3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O_2, SiC, γ-Al_2O_3 and α-Al_2O_3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO_2 SiC γ-Al_2O_3 α-Al_2O_3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al_2O_3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.  相似文献   

16.
The pyrolysis of biomass is a promising way for production of bio-gasoline if the stability and quality problems of the bio-crude-oil can be solved by catalytic cracking and reforming.In this paper,an on-line infrared spectrum was used to study thecharacteristics of catalytic pyrolysis with the following preliminary results.The removal of C O of organic acid is more difficultthan that of aldehydes and ketones.HUSY/γ-Al_2O_3 and REY/γ-Al_2O_3 catalysts exhibited better deoxygenating activities whileHZSM-5/γ-Al_2O_3 catalyst exhibited preferred selectivities for production of iso-alkanes and aromatics.Finally,possiblemechanisms of biomass catalytic pyrolysis are discussed as well.  相似文献   

17.
In the current study,the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated.The study includes both purely catalytic operation in the temperature range of 923-1023K,and hybrid catalytic-plasma operation of DC corona discharge reactor at room temperature and ambient pressure.The effect of feed flow rate,discharge power and Ni/γ-Al2O3 catalysts are studied.When CH4/CO2 ratio in the feed is 1/2,the syngas of low H2/CO ratio at about 0.56 is obtained,which is a potential feedstock for synthesis of liquid hydrocarbons.Although Ni catalyst is only active above 573K,presence of Ni catalysts in the cold corona plasma reactor(T≤523K) shows promising increase in the conversions of methane and carbon dioxide.When Ni catalysts are used in the plasma reaction,H2/CO ratios in the products are slightly modified,selectivity to CO increases whereas fewer by-products such as hydrocarbons and oxygenates are formed.  相似文献   

18.
陈平  侯昭胤  郑小明 《中国化学》2005,23(7):847-851
Ni/SiO2 catalysts promoted by alkali metals K and Cs or alkaline earth metals Mg, Ca, Sr and Ba were prepared, characterized by H2-TPR and XRD, and used for the production of synthesis gas via methane reforming with CO2. Though K and Cs promoted Ni catalysts could eliminate coke deposition, the reforming activity of these promoted catalysts was decreased heavily. Mg and Ca promoted Ni/SiO2 catalysts exhibited excellent coke resistance ability with minor loss of the reforming activity of Ni/SiO2. Ba showed poor coke resistance ability and small amount of Sr increased the formation of coke. The possible mechanism of these promoters was discussed.  相似文献   

19.
The increase of atmospheric carbon dioxide and the global warming due to its greenhouse effect resulted in worldwide concerns. On the other hand, carbon dioxide might be considered as a valuable and renewable carbon source. One approach to reduce carbon dioxide emissions could be its capture and recycle via transformation into chemicals using the technologies in C1 chemistry. Despite its great interest, there are difficulties in CO2 separation on the one hand, and thermodynamic stability of carbon dioxide molecule rendering its chemical activity low on the other hand. Carbon dioxide has been already used in petrochemical industries for production of limited chemicals such as urea. The utilization of carbon dioxide does not necessarily involve development of new processes, and in certain processes such as methanol synthesis and methane steam reforming, addition of CO2 into the feed results in its utilization and increases carbon efficiency. In other cases, modifications in catalyst and/or processes, or even new catalysts and processes, are necessary. In either case, catalysis plays a crucial role in carbon dioxide conversion and effective catalysts are required for commercial realization of the related processes. Technologies for CO2 utilization are emerging after many years of research and development efforts.  相似文献   

20.
The activity and thermal stability of Pd/Al_2O_3 and Pd/(Al_2O_3 MO_x)(M=Ca,La,Ce) palladium catalysts in the reaction of complete oxidation of methane are presented in this study.The catalyst supports were prepared by sol-gel method and they were dried either conventionally or with supercritical carbon dioxide.Then they were impregnated with palladium nitrate solution.The catalysts with unmodified alumina had a high surface area.The activity and thermal stability of the alumina- supported catalyst was also very high.The introduction of calcium,lanthanum,or cerium oxide into alumina support caused a decrease of the surface area in the way dependent on the support precursor drying method.These modifiers decreased the activity of palladium catalysts,and they required higher temperatures for the complete oxidation of methane than unmodified Pd/Al_2O_3.The improvement of the palladium activity by lanthanum and cerium support modifier was observed only at low temperatures of the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号