首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
本文分别研究了聚氧化乙烯(PEO)和聚醋酸乙烯酯(PVAc) 在苯溶液中的超声波辐照降解,PEO与PVAc在苯溶液中的超声波辐照共聚反应。实验证明,降解反应可用Ovenall方程描述。用IR、NMR和DTA分析了在超声波辐照作用下PEO与PVAc在苯溶液中生成的共聚物的结构,证明所得产物主要为接枝共聚物,将浓度为1%的(PEO-PVAc)苯溶液在频率为18.2kHz、逆变器主迥路输入电流为2.0安的超声波强度下,辐照10分钟,共聚物的产率为10.54%,接枝点密度为33.3%,平均接枝链长为17。  相似文献   

2.
本文分别研究了在超声波辐照下羟乙基纤维素(HEC)和聚氧化乙烯(PEO)在水溶液中的降解规律,HEC与PEO在水溶液中的超声波辐照共聚反应。用DTA、IR、MS、X射线衍射和偏光显微镜初步研究了共聚物的结构,证明所得产物主要是嵌段共聚物。将浓度为0.5%的HEC/PEO水溶液在25±1℃,频率为18.2kHz,超声波强度(以逆变器主迴路输入电流表示)为2.5A下辐照10分钟,共聚物产率为55.07%。  相似文献   

3.
在超声辐照作用下聚氧化乙烯和丙烯腈嵌段共聚的研究   总被引:2,自引:0,他引:2  
本文研究了聚氧化乙烯(PEO)和丙烯腈(AN)在水溶液中的超声共聚。共聚速率和AN浓度成正比,存在AN浓度最低限。PEO的降解速率常数越大,它所共聚的AN量越大,表明AN的聚合是由PEO降解生成的大自由基引发生成的。通过元素分析和IR测定证明产物为PEO-AN共聚物。通过POM、TEM、DSC和WAXD测定证实共聚物为结晶嵌段共聚物。  相似文献   

4.
超声辐照下PEO与NaMAA嵌段共聚反应的研究   总被引:1,自引:0,他引:1  
本文研究了在超声波辐照下聚氧化乙烯与甲基丙烯酸钠在水溶液中的嵌段共聚反应和共聚物结构。共聚反应按自由基聚合机理进行。反应动力学方程可用-(d[M]/(dt))=k[R·](1/6)[M]表示。随辐照时间或单体浓度的增加,共聚物产率和共聚物中NaMAA含量增大。将1%PEO-105%NaMAA水溶液在频率21.5kHz、阴极电流0.7A的超声强度下辐照15分钟,共聚物的产率为24.0%。用IR、MS、NMR、DSC、TEM等分析了共聚物的化学结构和聚集态结构,表明所得共聚产物为嵌段共聚物。  相似文献   

5.
首先,以溴代聚乙二醇单甲醚(PEO-Br)为引发剂、甲基丙烯酸丁酯(BMA)为单体,通过原子转移自由基聚合(ATRP)制备了一系列具有不同聚乙二醇(PEO)质量分数的聚甲基丙烯酸丁酯-b-聚乙二醇嵌段共聚物(PBMA-b-PEO)。在此基础上,将手性酒石酸(TA)以氢键的方式选择性掺入到嵌段共聚物的PEO相中,诱导嵌段共聚物自组装制备具有手性螺旋结构的复合薄膜PBMA-b-PEO/TA。利用小角X射线散射(SAXS)、透射电子显微镜(TEM)和圆二色光谱(CD)对嵌段共聚物复合薄膜进行表征,研究了嵌段质量分数对手性诱导嵌段共聚物螺旋结构自组装的影响。结果表明:掺入TA与嵌段共聚物质量比为0.12、0.15的TA,当PEO质量分数为0.17~0.24时,有利于嵌段共聚物相分离形成柱状螺旋结构;当PEO质量分数增加至0.26时,嵌段共聚物自组装则形成层状结构,在分子间氢键作用下虽然发生手性转移,但无法得到螺旋结构。  相似文献   

6.
环氧树脂(ER)与聚环氧乙烷(PEO)的共混物经水/乙醇萃取后的剩余物为交联ER-PEO非晶共聚物。萃取分析表明,ER/PEO中约有50wt·%的PEO与ER形成ER-PEO交联共聚物。ER/PEO与NaSCN络合后,由于Na~ 的配位络合作用,使结晶能力进一步降低。  相似文献   

7.
以异辛酸亚锡为催化剂 ,通过聚乙二醇醚 (PEG)引发ε 己内酯和L 丙交酯开环聚合 ,制备了PCL/PEO/PLA三元共聚物 .研究了聚合物在 pH7 4磷酸缓冲溶液、37℃条件下的体外降解行为 .采用GPC、1H NMR、DSC和XRD技术研究了聚合物在水解降解过程中分子量、分子量分布、组成、吸水率、结晶性等的变化 .结果表明共聚物的吸水率随聚醚组分含量而增大 ;随水解材料的失重率增大 ,聚醚组分含量下降程度也加大 .此外研究还表明 :聚合物中丙交酯组分含量高时 ,聚合物的结晶结构主要由PLLA形成 .由于聚合物的水解降解首先发生在无定形区和结晶区边缘 ,随着共聚物的降解、结晶性的PLLA低聚物的生成 ,导致了共聚物的分子量呈双峰分布  相似文献   

8.
温敏梳状嵌段共聚物对PS微球阻抗蛋白吸附作用的研究   总被引:2,自引:0,他引:2  
采用可逆加成断裂链转移聚合(RAFT)方法和大分子单体技术,制备了温敏性聚N-异丙基丙烯酰胺(PNIPAM)-聚乙烯基吡咯烷酮(PVP)与PNIPAM-聚氧化乙烯(PEO)梳状嵌段共聚物,这些共聚物具有PVP或PEO支链.以溶菌酶为蛋白模型研究了所得共聚物对聚苯乙烯(PS)微球表面蛋白吸附的抑制作用.通过絮凝实验、激光散射法表观粒径测定、电泳迁移率测定及蛋白吸附量的定量数据比较了不同梳状结构的抗蛋白吸附效果.结果表明,预吸附梳状嵌段共聚物可有效阻抗蛋白吸附,亲水支链增加阻抗性能提高,即使环境温度高于PNIPAM的相转变温度也能阻抗蛋白吸附.透射电镜和共聚物胶体粒径测试表明,梳状嵌段共聚物阻抗蛋白吸附的机制是预吸附后PVP或PEO亲水支链在微球表面形成了阻隔层.通过PS微球的变温絮凝实验可评价预吸附聚合物的抗蛋白吸附性能,快速获得定性结果.  相似文献   

9.
几种硅-硅链高聚物的合成和性质   总被引:3,自引:0,他引:3  
采用具有不同取代基的二氯硅烷,在金属钠作用下共缩合的方法,合成了几种硅-硅链共聚物。这些共聚物分子量高,既能溶于一般的有机溶剂,也可在较低的温度下熔融,模压或浇铸成膜,或抽成纤维。在紫外光辐照下,高聚物的薄膜或纤维发生降解或交联反应。  相似文献   

10.
以异辛酸亚锡为催化剂,通过聚乙二醇醚(PEG)引发ε-己内酯和L-丙交酯开环聚合,制备了PCL/PEO/PLA三元共聚物.研究了聚合物在pH7.4磷酸缓冲溶液、37℃条件下的体外降解行为.采用GPC、1H-NMR、DSC和XRD技术研究了聚合物在水解降解过程中分子量、分子量分布、组成、吸水率、结晶性等的变化.结果表明共聚物的吸水率随聚醚组分含量而增大;随水解材料的失重率增大,聚醚组分含量下降程度也加大.此外研究还表明:聚合物中丙交酯组分含量高时,聚合物的结晶结构主要由PLLA形成.由于聚合物的水解降解首先发生在无定形区和结晶区边缘,随着共聚物的降解、结晶性的PLLA低聚物的生成,导致了共聚物的分子量呈双峰分布.  相似文献   

11.
The morphology of poly(methyl methacrylate), poly(ethylene oxide) blend and the grafted copolymer poly(methyl methacrylate-g-ethylene oxide) was observed by scanning electron microscopy. The contrast was obtained by an etching technique, removing the PEO phase out of the blend. The PEO phase of the copolymer was stained with OsO4 and better contrast was observed using a back-scattering image. The PEO phase was shown to be distributed as spherical domains in the PMMA matrix for both the copolymer and the blend.  相似文献   

12.
We have been able to prepare a molecular complex between the poly(ethylene oxide) block of a poly(ethylene)-b-poly(ethylene-alt-propylene)-b-poly(ethylene oxide) triblock copolymer and p-nitrophenol (PNP). The composition of the copolymer employed was: 24% PE, 57% PEP and 19% PEO in weight percent. The pure copolymer exhibited a non-conventional thermal behavior since the PEO block displayed a fractionated crystallization process during cooling. The PEO block/PNP complex did not show any apparent crystallization during cooling, instead cold crystallization during heating was observed and an approximately 30°C increase in melting point as compared to the neat PEO block within the copolymer. This caused an overlap in the melting regions of the PE block and the PEO block/PNP complex. The self-nucleation of the PE-b-PEP-b-PEO/PNP complex is very different from that of the neat triblock copolymer. An increased capacity for self-nucleation of the PEO block was produced by the complexation with PNP and therefore the three self-nucleation domains were clearly encountered for both the PE block and for the PEO block/PNP complex. Self-nucleation was able to show that the two crystallizable blocks can be self-nucleated and annealed in an independent way, thereby ascertaining the presence of separate crystalline regions in the triblock copolymer. Through the use of PNP, both the crystallinity and the melting point of the PE-b-PEP-b-PEO block copolymer employed here can be substantially increased. Similar results were obtained by complexation of the same ABC triblock copolymer with resorcinol.  相似文献   

13.
The ultrasonic degradation of hydroxyethylcellulose (HEC) and poly (ethylene oxide) (PEO) in aqueous solution, and the copolymerization of HEC with PEO were studied. The structure of the copolymer was identified by DTA, IR, MS, x-ray diffraction, and polarizing microscopy. The copolymer prepared is mainly block. The copolymer formed amounts to 55.07% by irradiating 0.5% HEC/PEO aqueous solution for a period of 10 min at 25°C and 18.2 kHz with 2.5 A input current on a reversed main circuit.  相似文献   

14.
The adsorption behavior of poly(ethylene oxide)-b-poly(L-lysine) (PEO(113)-b-PLL(10)) copolymer onto silica nanoparticles was investigated in phosphate buffer at pH 7.4 by means of dynamic light scattering, zeta potential, adsorption isotherms and microcalorimetry measurements. Both blocks have an affinity for the silica surface through hydrogen bonding (PEO and PLL) or electrostatic interactions (PLL). Competitive adsorption experiments from a mixture of PEO and PLL homopolymers evidenced greater interactions of PLL with silica while displacement experiments even revealed that free PLL chains could desorb PEO chains from the particle surface. This allowed us to better understand the adsorption mechanism of PEO-b-PLL copolymer at the silica surface. At low surface coverage, both blocks adsorbed in flat conformation leading to the flocculation of the particles as neither steric nor electrostatic forces could take place at the silica surface. The addition of a large excess of copolymer favoured the dispersion of flocs according to a presumed mechanism where PLL blocks of incoming copolymer chains preferentially adsorbed to the surface by displacing already adsorbed PEO blocks. The gradual addition of silica particles to an excess of PEO-b-PLL copolymer solution was the preferred method for particle coating as it favoured equilibrium conditions where the copolymer formed an anchor-buoy (PLL-PEO) structure with stabilizing properties at the silica-water interface.  相似文献   

15.
Biodegradable, amphiphilic, four‐armed poly(?‐caprolactone)‐block‐poly(ethylene oxide) (PCL‐b‐PEO) copolymers were synthesized by ring‐opening polymerization of ethylene oxide in the presence of four‐armed poly(?‐caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL‐b‐PEO copolymer was confirmed by 1H NMR and 13C NMR. The hydroxyl end groups of the four‐armed PCL were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four‐armed architecture of the copolymer. Physicochemical properties of the four‐armed block copolymers differed from their starting four‐armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four‐armed block copolymer increased with PEO length and PEO content. The micelle formation of the four‐armed block copolymer was examined by a fluorescent probe technique, and the existence of the critical micelle concentration (cmc) confirmed the amphiphilic nature of the resulting copolymer. The cmc value increased with increasing PEO length. The absolute cmc values were higher than those for linear amphiphilic block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 950–959, 2004  相似文献   

16.
The physical adsorption of PEO(n)-b-PLL(m) copolymers onto silica nanoparticles and the related properties of poly(ethylene oxide) (PEO)-coated particles were studied as a function of the block copolymer composition. Copolymers adopt an anchor-buoy conformation at the particle surface owing to a preferential affinity of poly(L-lysine) (PLL) blocks with the silica surface over PEO blocks when a large excess of copolymer is used. The interdistance between PEO chains at particle surface is highly dependent on the size of PLL segments; a dense brush of PEO is obtained for short PLL blocks (DP = 10), whereas PEO chains adopt a so-called interacting "mushroom" conformation for large PLL blocks (DP = 270). The size of the PEO blocks does not really influence the copolymer surface density, but it has a strong effect on the PEO layer thickness as expected. Salt and protein stability studies led to similar conclusions about the effectiveness of a PEO layer with a dense brush conformation to prevent colloidal aggregation and protein adsorption. Besides, a minimal PEO length is required to get full stabilization properties; as a matter of fact, both PEO(45)-b-PLL(10) and PEO(113)-b-PLL(10) give rise to a PEO brush conformation but only the latter copolymer efficiently stabilizes the particles in the presence of salt or proteins.  相似文献   

17.
The effect of potassium chloride on the micellization of a poly(ethylene oxide)‐poly(propylene oxide)‐poly(ethylene oxide) (PEO‐PPO‐PEO) triblock copolymer (Pluronic F88: EO103PO39EO103.) in water was studied by fluorescence, FTIR, 1H NMR, dynamic light scattering, and dye solubilization. The critical micellization temperature (CMT) values of the copolymer decreased with an increase of KCl concentration while micellar core gets progressively dehydrated. The results reveal the leading role of salt‐water interaction in promoting the micellization of PEO‐PPO‐PEO copolymer by the addition of salt. No significant micellar growth was seen even at temperatures close to cloud point.  相似文献   

18.
A new synthetic approach for the preparation of segmented polyurethaneurea (SPUU)–PEO–Heparin graft copolymers (B–PEO–Hep) has been developed. The procedure involved the coupling of hexamethylene diisocyanate (HMDI) to soluble Biomer® (B) through an allophanate/biuret reaction. The free isocyanate (NCO) groups attached to Biomer® were then coupled to PEO terminal hydroxyl groups to form PEO grafted Biomer® (B–PEO). B–PEO free hydroxy groups were modified with HMDI to introduce terminal isocyanate groups. The NCO functionalized B–PEO was then coupled to heparin (Hep) functional groups (? OH, ? NH2) producing B–PEO–Hep graft copolymer. Synthetic intermediates were confirmed by FTIR, NCO group determination, and toluidine blue heparin assay. Physical characterization techniques, such as contact angle measurements, water swelling, light scattering measurements, and DSC thermal analysis, detailed properties of the graft copolymer containing covalently bound heparin. This new heparinized copolymer can be applied as a coating on other existing blood contacting surfaces without changing bulk properties. The heparin bioactivity observed attests to the usefulness of this new procedure as a coating to improve the blood compatibility of blood-contacting surfaces.  相似文献   

19.
嵌段共聚物傅里叶变换拉曼光谱   总被引:3,自引:0,他引:3  
王靖  郭晨  刘会洲 《分析化学》2001,29(1):35-37
用傅里叶变换拉曼光谱(FT-Paman)研究了聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(PEO-PPO-PEO)嵌段共聚物的无水样品,发现某些谱带对PEO0-PPO-PEO嵌段共聚物的结构和构象变化敏感,其中某些峰的相对强度的PPO/PEO比率和共聚物的构象有关,研究表明PluronicF68和F88具有一些反式构象的螺旋结构,PluronicP103(P123)是无规则结构,其它的嵌段共聚物处于二者之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号