首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学会会志》2017,64(5):457-463
Recently, a great deal of work has been done in the construction of C–CF3 or C–SCF3 bonds, because these fluorine groups display remarkable biological properties. Despite a trifluoromethylseleno group like CF3 or SCF3 may also have potential biological activity, the work on the construction of the C–SeCF3 bond is rarely reported. This mini‐review highlights recent developments in trifluoromethylselenolation reactions using fluorine reagents, such as (Me4N )SeCF3 , ClSeCF3 , [(bpy)Cu(SeCF3 )]2, Me3SiCF3 , and HCF3 . Five approaches to the trifluoromethylselenolation of organic compounds are summarized: (1) trifluoromethylselenolation of aryl, alkyl, and heteroaryl halides, aromatic compounds, and boronic acids; (2) trifluoromethylselenolation of terminal alkynes and propargylic chlorides; (3) trifluoromethylselenolation of allylic bromides, vinyl halides, α‐bromo‐α,β‐unsaturated carbonyl compounds, and acyl chlorides; (4) trifluoromethylselenolation of diazo compounds; and (5) synthesis of trifluoromethyl selenides from selenocyanates and fluoroform.  相似文献   

2.
Due to their high lipophilicity and strong electron-withdrawing property, more and more attention has been paid to introducing trifluoromethylseleno and fluoroalkylseleno moieties into organic molecules. In this short review, we categorize the synthesis of compounds that combine selenium and fluorinated moieties into two main types: trifluoromethylselenolation (CF3Se) and fluoroalkylselenolation (RfSe, except CF3Se). This review aims to provide a summary of the recent advances in direct C−H trifluoromethylselenolation and fluoroalkylselenolation from the synthesis of trifluoromethylselenolation and fluoroalkylselenolation reagents to their application. Based on the method of how the RfSe group was introduced, the main content is divided into three parts: transition-metal-free reactions, transition-metal-mediated/catalyzed reactions and photo-catalyzed reactions. The general substrate scope, mechanism and limitations would also be discussed so that we hope the review will serve as an inspiration for further research in this appealing research field.  相似文献   

3.
Progress in the transition‐metal‐catalyzed or ‐free fluoroalkylation of diazo compounds with different types of fluoroalkyl (Rfn) transfer reagents is summarized in this review. Special attention is focused on the straightforward trifluoromethylation, gem‐difluoroolefination, trifluoromethoxylation, fluoroalkylthiolation, and trifluoromethylselenolation of diazo substrates. The mechanistic insights and the application of some of the products are also discussed in this article. We believe that this review will inspire both young and experienced chemists to further study the direct fluoroalkylation of diazo compounds as an efficient and convenient way to build complex fluorine‐containing molecules.  相似文献   

4.
We herein showcase the ability of NHC‐coordinated dinuclear NiI–NiI complexes to override fundamental reactivity limits of mononuclear (NHC)Ni0 catalysts in cross‐couplings. This is demonstrated with the development of a chemoselective trifluoromethylselenolation of aryl iodides catalyzed by a NiI dimer. A novel SeCF3‐bridged NiI dimer was isolated and shown to selectively react with Ar−I bonds. Our computational and experimental reactivity data suggest dinuclear NiI catalysis to be operative. The corresponding Ni0 species, on the other hand, suffers from preferred reaction with the product, ArSeCF3, over productive cross‐coupling and is hence inactive.  相似文献   

5.
A novel route to the synthesis of α-trifluoromethylthio- and seleno-α,β-unsaturated carbonyl compounds via a copper-mediated trifluoromethylthiolation/trifluoromethylselenolation of α-halo-α,β-unsaturated carbonyl substrates is reported.  相似文献   

6.
The copper-mediated trifluoromethylselenolation of propargylic chlorides and allylic bromides is described. This approach provides a wide range of propargylic and allylic trifluoromethyl selenoethers in moderate to good yields. These results open the way to synthesis strategies for various trifluoromethylselenolated compounds.  相似文献   

7.
The first visible‐light‐mediated synthesis of trifluoromethylselenolated arenes under metal‐free conditions is reported. The use of an organic photocatalyst enables the trifluoromethylselenolation of arene diazonium salts using the shelf‐stable reagent trifluoromethyl tolueneselenosulfonate at room temperature. The reaction does not require the presence of any additives and shows high functional‐group tolerance, covering a very broad range of starting materials. Mechanistic investigations, including EPR spectroscopy, luminescence investigations, and cyclic voltammetry allow rationalization of the reaction mechanism.  相似文献   

8.
Trifluorometylselenolation via C−H activation is barely described in literature. In particular, no such vinylic functionalization has been yet described. Herein, a palladium-catalyzed trifluoromethylselenolation of vinylic C−H bonds is described. The 5-methoxy-8-aminoquinoline has been used as auxiliary directing group to perform this reaction. The reaction gives excellent yields with α-substituted compounds whatever the substituents and a microwave activation can be used to accelerate the reaction. With β-substituted substrates lower yields, but still satisfactory, are obtained. This methodology was also successfully extended to other fluoroalkylselenyl groups.  相似文献   

9.
The synthesis of molecules bearing (trifluoromethylselenyl)methylchalcogenyl groups is described via an efficient two-step strategy based on a metal-free photoredox catalyzed decarboxylative trifluoromethylselenolation with good yields up to 88 %, which raised to 98 % in flow chemistry conditions. The flow methods allowed also to scale up the reaction. The mechanism of this key reaction was studied. The physicochemical characterization of these emerging groups was performed by determining their Hansch–Leo lipophilicity parameters with high values up to 2.24. This reaction was also extended to perfluoroalkylselenolation with yields up to 95 %. Finally, this method was successfully applied to the functionalization of relevant bioactive molecules such as tocopherol or estrone derivatives.  相似文献   

10.
Brylev  K. A.  Virovets  A. V.  Naumov  N. G.  Mironov  Yu. V.  Fenske  D.  Fedorov  V. E. 《Russian Chemical Bulletin》2001,50(7):1140-1143
The new octahedral molybdenum thiocyanide cluster complex K7[Mo6S8(CN)6]·8H2O was synthesized by excision of the cluster core (the reaction of ZnMo6S8 with a melt of KCN). The structure of the complex was established by X-ray diffraction analysis. The reaction of Mo6Se8 with a KCN—KSCN mixture afforded the mixed-ligand cluster anions [Mo6(Se,S)8(CN)6]7–. The salt of composition K1.5Cs5.5[Mo6Se6.8S1.2(CN)6]·8H2O was obtained. The complexes are isostructural to each other and to the selenium analog described previously. The magnetic properties and the electronic and IR spectra were measured and discussed.  相似文献   

11.
刘利  崔文权  邱发礼 《化学学报》2010,68(3):211-216
采用高温固相法合成了铈掺杂的K2La2Ti3O10催化剂, 利用X射线衍射(XRD)、紫外-可见漫反射(UV-vis DRS)、透射电镜(TEM)和X射线光电子能谱(XPS)对催化剂进行了表征. 考察了催化剂的可见光催化分解甲醇水溶液制氢的活性, 并对可见光催化机理进行了分析. 研究表明, 铈的掺杂没有改变K2La2Ti3O10的微晶结构, 并使催化剂粒径有所减小. 紫外可见漫反射分析表明禁带宽度为2.3 eV左右, 对可见光具有较高吸收. XPS表明La和Ti为+3和+4价, 而Ce则是+3和+4的混合价态. 担载2 wt% Pt后, 在可见光下光催化活性大大提高, 当铈的掺杂量为0.5 mol%(即Ce取代La的摩尔百分量)时, 光催化活性达到最大, 产氢速率为0.05 mmol/h; 光照5 h后产氢量为0.22 mmol, 而纯K2La2Ti3O10的产氢量只有0.037 mmol.  相似文献   

12.
含O2高温高压CO2环境中3Cr钢腐蚀产物膜特征   总被引:1,自引:0,他引:1  
采用高温高压反应釜分别开展3Cr钢在CO2和O2共存、单独CO2和单独O2三种气体条件下的腐蚀实验,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散X射线能谱(EDS)和电化学方法研究了3Cr钢在高温高压含有O2的CO2环境中的腐蚀产物膜特征.结果表明,在含有O2的CO2的条件下,3Cr钢表面腐蚀产物膜疏松多孔,主要成分为FeCO3、Fe3O4和Fe2O3,腐蚀产物中未见明显Cr元素富集,3Cr钢表现出点蚀的腐蚀形态.3Cr钢在高温高压含O2的CO2腐蚀条件下内外膜层电阻(Rf1、Rf2)和电荷传递电阻Rt均比仅含有CO2腐蚀环境的低,双电层电容(Cdl)和内外膜层电容(Cf1、Cf2)均比仅含有CO2腐蚀环境的高.含有O2的CO2条件下,其保护性显著低于单一CO2条件下形成的腐蚀产物膜.提出了在含O2的CO2气体条件下,3Cr钢表面存在由多种物质组成的腐蚀产物,这导致腐蚀产物疏松多孔,不会形成单一CO2条件下存在的显著提高腐蚀产物膜保护性的Cr(OH)3层,从而促进了3Cr钢的析氢腐蚀和酸性介质中的吸氧腐蚀的机理.  相似文献   

13.
The influence of SiO2, TiO2, and ZrO2 on the structural and redox properties of CeO2 were systematically investigated by various techniques namely, X-ray diffraction (XRD), Raman spectroscopy (RS), UV–Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HREM), BET surface area, and thermogravimetry methods. The effect of supporting oxides on the crystal modification of ceria was also mainly focused. The investigated oxides were obtained by soft chemical routes with ultrahigh dilute solutions and were subjected to thermal treatments from 773 to 1073 K. The XRD results suggest that the CeO2–SiO2 sample primarily consists of nanocrystalline CeO2 on the amorphous SiO2 surface. Both crystalline CeO2 and TiO2-anatase phases were noted in the case of CeO2–TiO2 sample. Formation of cubic Ce0.75Zr0.25O2 and Ce0.6Zr0.4O2 (at 1073 K) were observed in the case of CeO2–ZrO2 sample. The cell ‘a’ parameter estimations revealed an expansion of the ceria lattice in the case of CeO2–TiO2, while a contraction is noted in the case of CeO2–ZrO2. The DRS studies suggest that the supporting oxides significantly influence the band gap energy of CeO2. Raman measurements disclose the presence of oxygen vacancies, lattice defects, and displacement of oxide ions from their normal lattice positions in the case of CeO2–TiO2 and CeO2–ZrO2 samples. The XPS studies revealed the presence of silica, titania, and zirconia in their highest oxidation states, Si(IV), Ti(IV), and Zr(IV) at the surface of the materials. Cerium is present in both Ce4+ and Ce3+ oxidation states. The HREM results reveal well-dispersed CeO2 nanocrystals over the amorphous SiO2 matrix in the case of CeO2–SiO2, isolated CeO2 and TiO2 (A) nanocrystals and some overlapping regions in the case of CeO2–TiO2, and nanosized CeO2 and Ce–Zr oxides in the case of CeO2–ZrO2 sample. The exact structural features of these crystals as determined by digital diffraction analysis of HREM experimental images reveal that the CeO2 is mainly in cubic fluorite geometry. The oxygen storage capacity (OSC) as determined by thermogravimetry reveals that the OSC of mixed oxides is more than that of pure CeO2 and the CeO2–ZrO2 exhibits highest OSC.  相似文献   

14.
用气液反应法和化学溶液分解技术(CSD)分别制备了WO3和Bi12SiO20粉末,并将二者耦合,合成出WO3/Bi12SiO20复合光催化剂.以气相苯的降解为探针反应,考查了催化剂的光催化活性.结果表明:耦合后的WO3/Bi12SiO20催化剂的催化活性显著提高,其中30%(w)WO3/Bi12SiO20在紫外光下对苯的降解率明显优于P-25,而且催化剂具有一定的可见光响应能力.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、N2吸附-脱附(BET)和紫外-可见漫反射(UV-VisDRS)等手段对催化剂进行了表征.结果表明:WO3与Bi12SiO20之间存在良好的能带协同作用.WO3与Bi12SiO20耦合后,催化剂的光响应范围拓宽,光生电子和空穴能有效地分离,光生电子和空穴产生速率增大,所以催化剂活性提高.  相似文献   

15.
在γ-Al2O3载体上用等体积浸渍法浸渍Pd、MnOx活性组分,然后涂覆于堇青石基体上制备Pd-MnOx/γ-Al2O3整体式催化剂.分别用X射线衍射(XRD)、H2-程序升温还原(H2-TPR)、低温N2吸附-脱附及X射线光电子能谱(XPS)对制备的催化剂进行表征.研究了Pd、MnOx浸渍顺序对催化剂活性、氧化还原性能及织构性质的影响.实验结果表明,Pd、MnOx共浸渍较分别浸渍制备的催化剂活性好,Pd和MnOx之间存在一定的协同作用.考察了不同载体如La-Al2O3、SiO2、γ-Al2O3和Zr-Al2O3对催化剂活性、氧化还原性能、织构性质及表面电子性能的影响.研究表明,以La-Al2O3或SiO2为载体的催化剂活性最好,即,14°C时O3转化率为82%,完全转化温度为36°C.γ-Al2O3载体次之,Zr-Al2O3载体较差.不同载体制备的催化剂中MnOx的氧化还原性能顺序为:PdMnOx/SiO2Pd-MnOx/La-Al2O3Pd-MnOx/γ-Al2O3Pd-MnOx/Zr-Al2O3.  相似文献   

16.
The density functional theory (DFT) calculation of hydrogen adsorption on tungsten oxides and calculation of the crystal structure of WO3, W20O58, and W18O49 were performed. These calculations suggest that the length of W-O bonds in WO3 are 1.913 Å, the length of 66% W-O bonds in W20O58 is 1.8 to 1.9 Å, and the length of 43.48% W-O bonds in W18O49 is longer than 2.0 Å. The hydrate (WO2[OH]2), as an autocatalyst in the hydrogen reduction process, was found in the particular adsorption configuration of W18O49. The WO3 and W20O58 were completely reduced within 40 to 60 minutes at a temperature of 1000°C and at a hydrogen flow rate of 200 mL/min, while W18O49 was completely reduced within 20 to 40 minutes. The phase composition and micromorphology of raw material and production were studied by both X-ray diffraction analysis (XRD) and FE-SEM technology. The differences of the mechanism of hydrogen adsorption on WO3, W20O58, and W18O49 were explored based on the density functional theory calculation and the hydrogen reduction experiments.  相似文献   

17.
Thermal behaviour of sodium oxo-salts of sulphur: Na2SO4, Na2S2O7, Na2S2O6, Na2SO3, Na2S2O5, Na2S2O4, Na2S2O3, Na2S3O6 and of sulphides Na2S and Na2S2 was studied on heating up to 1000°C. The experiments were performed with anhydrous compounds obtained from commercial products by recrystallisation and dehydration. The stage mechanisms of decomposition of anionic sub-lattices of the salts have been proposed basing on the Górski’s morphological classification of simple species. The thermal stability and the stage decomposition mechanisms were correlated with the structure and the potential chemical properties of the salt anions. The thermal decomposition processes were studied by means of thermal analysis, and the decomposition products were identified by means of X-ray phase analysis.  相似文献   

18.
A theoretical analysis of the phase stability, electronic and mechanical properties, and Debye temperatures of the C14-type Laves phases (WFe2, MoFe2, WCr2 and MoCr2) has been presented from density functional theory. The phase stability follows the order: WFe2>MoFe2>WCr2>MoCr2. An exchange of electrons takes place between Fe and W/Mo atoms, and there is also electron transfer between Cr and W/Mo. The W–W and Mo–Mo bonds are of the valence character, while the Fe–W/Mo and Cr–W/Mo bonds are of ionic character. The bonding force of A–A is greater than that of A–B in C-14 AB2 type Laves phases (WFe2, MoFe2, WCr2 and MoCr2). The ductility of MoCr2 is higher than others. The hardness of WFe2 (14.1 GPa) is the highest, and the hardness of MoCr2 is the lowest. The incompressibility for these laves phases along c-axis is larger than that along a-axis. The Debye temperature (θD) of MoFe2 is 619 K, which is the highest in those phases. These laves phases also have high melting points, which follows the order: WFe2>MoFe2>WCr2>MoCr2.  相似文献   

19.
The Bi2O3/Bi2WO6 heterojunction photocatalysts were prepared by a two-step solvothermal process using Bi(NO3)3-ethylene glycol solution as Bi source. The catalysts were characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflection spectroscopy. The heterostructure catalysts are composed of Bi2O3 nanoparticles as modifier and 3D Bi2WO6 microspheres as substrate. Bi2O3 nanoparticles with diameters of about 10-15 nm are tightly grown on the lateral surface of the Bi2WO6 microspheres. The hierarchical Bi2O3/Bi2WO6 microspheres exhibit higher photocatalytic activity than the single phase Bi2WO6 or Bi2O3 for the degradation of rhodamine B under visible light illumination (λ>420 nm). The enhancement of the photocatalytic activity of the Bi2O3/Bi2WO6 heterojunction catalysts can be ascribed to their improved light absorption property and the reduced recombination of the photoexcited electrons and holes during the photocatalytic reaction. The effect of loading amount of Bi2O3 on the catalytic performance of the heterojunction catalysts was also investigated and the optimal content of Bi2O3 is 3 wt%. The Bi2O3/Bi2WO6 heterojunction photocatalysts are essentially stable during the photocatalytic process.  相似文献   

20.
The photochemical reaction of Re2(CO)10 with thiophene in hexane solution was investigated under vacuum. Three rhenium clusters: H2Re3(CO)12, HRe3(CO)14 and Re3(CO)14(OH)4, were isolated. The structure of Fellmann-Kaesz cluster Complex HRe3(CO)14 was determined by use of the X-ray diffraction method. The three rhenium atoms form a plane of symmetry and L: Re1Re2Re3 is 107°. The ten carbonyl groups bonded to the two terminal rhenium atoms Re1 and Re3, are staggered with respect to the central rhenium atoms. The bond lengths are 3.10 Å for Re2-Re3 and 3.34 Å for Re1-Re2. The bridging hydride is between Re1 and Re2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号