首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
On the Chemical Transport of Tungsten Oxides WO2 and W18O49 with Hgl2. Experiments and Calculations Transport experiments with WO2 or W + WO2 or WO2 + W18O49 show that HgI2 is a transport agent as suitable as I2. We observed transport rates up to 47 mg/h. We investigated the dependence of the transport rate on the concentration of the transport agent n°(HgI2) as well as on the temperature. We also investigated the time dependence of the transport rates during transport experiments on a “transport balance”. Starting with WO2 + W18O49, WO2 is transported before W18O49. Thermodynamic calculations show that transport of W18O49 is understandable if the presence of small amounts of H2O from the quartz glass wall are taken into consideration, while transport of WO2 is possible with HgI2 in the presence of H2O as well as in absence of H2O. is the most important reaction for the transport of WO2.  相似文献   

2.
研究表明二元、三元钨基氧化物的红外吸收性能具有尺寸和形貌依赖性,但还没有普适性的物理学机理及计算方法。本工作基于Mie散射理论,推导了一维材料的长度与光吸收性能之间的关系,通过理论推导计算和实验验证,探究了纳米钨基氧化物的红外吸收性能与颗粒长度的关联性。首先,基于Mie散射理论的推演和计算,揭示了增加纳米Cs_(0.2)WO_3和W_(18)O_(49)材料长度可适度提高其近红外吸收性能的规律。其次,测试了合成的不同长度Cs_(0.2)WO_3纳米棒和W_(18)O_(49)纳米线的红外吸收性能,结果与理论计算及模拟相吻合。其中在2 500~20 000 nm波长范围内Cs_(0.2)WO_3纳米棒和W_(18)O_(49)纳米线随长度的变化趋势不同,Cs_(0.2)WO_3纳米棒的红外吸收性能随长度的增加而增加,而W_(18)O_(49)纳米线的红外吸收性能随长度的增加而减弱。Cs_(0.2)WO_3纳米棒和W_(18)0O_9纳米线的光热效应均随长度的增加而增加,增幅分别达18.5%和12.7%,再次验证了长度效应。  相似文献   

3.
The reaction of W6Br12, NaBr, and WO2Br2 in the presence of Br2 in a sealed silica tube yields Na[W2O2Br6] together with WOBr4 and WO2Br2 in the low temperature zone (temperature gradient 1030/870 K). Na[W2O2Br6] crystallizes orthorhombically in the space group Immm (no. 71) with a = 3.775 Å, b = 10.400 Å, c = 13.005 Å and Z = 2. Pairs of condensed trans-[WO2Br4] octahedra with a common Br2 edge form along [100] double chains [W2O4/2Br6]1– via the oxygen atoms. The mixed valent tungsten atoms are bonded to W2 pairs with a 2 c–3 e bond (d(W–W) = 2.946 Å, d(W–O) = 1.888 Å, d(W–Brb) = 2.537 Å, d(W–Brt) = 2.535 Å, ∢O–W–O = 177.4°, ∢Brb–W–Brb (endocyclic) = 109.0°). The Na+ cations connect the anionic double chains to form two-dimensional layers parallel (001), which interact by van der Waals forces. The cations are eightfold coordinated by a cube of the terminal Brt ligands of the polymeric anions (d(Na–Br) = 3.138 Å). Na[W2O2Br6] may be discussed as an intercalation compound of the oxide bromide WOBr3.  相似文献   

4.
Synthesis, Structure, and Vibrational Spectra of the Oxofluorotungstates(VI) Cs2[WO3F2] and Cs3[W2O4F7] Cs2[WO3F2] crystallizes from a melt with the same composition. The orthorhombic unit cell with a = 6.779(2), b = 7.668(1) and c = 11.626(3) Å, space group Pn21a, contains 4 formula units. The WO3F22? anion is polymer, W octahedrally coordinated according to the results of the X-ray crystal structure determination. Planar dioxodifluoro groups are linked into chains by oxygen atoms. The lengths of the W? O bonds are alternating. Cs3[W2O4F7] crystallizes trigonal, space group P3 m1, with a = 21.118(4) and c = 8.434(2) Å, Z = 9. The structure consists of two sets of crystallographically non equivalent dimeric anions with the formula [O2F3W? F? WO2F3]3?. Part of the ligand atoms are disordered. The vibrational spectra of both compounds show the presence of cis-dioxo groups of the terminal ligands.  相似文献   

5.
New Heteropolyanions of the M2X2W20 Structure Type with Antimony(III) as a Heteroatom The syntheses of two new heteropolyanions of the M2X2W20 structure type are presented. They are characterized by X‐ray structure analysis and vibrational spectra. Na6(NH4)4[Zn2(H2O)6(WO2)2(SbW9O33)2]·36H2O (1) is monoclinic (P21/n) with a = 12.873(3)Å, b = 25.303(4)Å, c = 15.975(4)Å and β = 91.99(3)°. Na10[Mn2(H2O)6(WO2)2(SbW9O33)2]·40H2O (2) also crystallizes in the space group P21/n with a = 12.892(3)Å, b = 25.219(5)Å, c = 16.166(3)Å and β = 94.41(3)°. Both polyanions are isostructural to anions of this structure type containing other heteroatoms. They are built up by two β‐B‐SbW9 fragments, which are derived from defect structures of the Keggin anion. These subÍunits are connected by two formal WO2 groups with further stabilization by addition of two M(H2O)3 groups (M = ZnII, MnII, FeIII, CoII) leading to the M2X2W20‐type heteropolytungstates.  相似文献   

6.
On Hexagonal Perovskites with Cationic Vacancies. XII. Structure Determination on Ba6W42O18 The stacking polytype Ba6W42O18 is the first oxidic variant of the Cs3Tl2Cl9-type. The structure determination gave for the space group R3 c with the sequence (h)6, Z = 3, the refined, intensity related R′ value of 6.8%. The octahedral net consists of groups of two face sharing WO6 octahedra (W2O6/2;O6), which are in the (110) plane displaced against each other. In the doublé octahedra the tungsten atoms are shifted away from their ideal central position (W–W: 2.327 Å) with the result, that the W–W distance has increased to 2.905 Å.  相似文献   

7.
以氯化钨为前驱体,通过溶剂热法制备了WO3和W18O49并将其应用在染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)和电解水析氢反应(hydrogen evolution reaction,HER)中。通过X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)对WO3和W18O49的结构和形貌进行表征。结果表明:WO3和W18O49均为单斜相,其形貌表现为定向排列的纳米棒组成的团簇。X射线光电子能谱(XPS)和电子顺磁共振(EPR)表明W18O49中含有丰富的氧空位。基于氧空位优异的电化学特性,W18O49对电极组装的DSSC获得了7.41%的光电能量转换效率(power conversion efficiency,PCE),高于WO  相似文献   

8.
Fluorine-19 and natural abundance 17O and 183W NMR spectroscopy were employed for the characterization of aqueous solutions of (NH4)2WO2F4 and (NH4)3WO3F3. Dissolution of the (NH4)2WO2F4 complex is accompanied by its partial acid hydrolysis to give the trans(mer)-dimer, [W2O5F6]4−, and unreacted cis-[WO2F4]2−. The cis(fac)-[W2O5F6]4− anion is the major soluble product resulting from the alkaline hydrolysis of (NH4)2WO2F4 along with the isolation of the solid (NH4)2WO3F2. In addition, the edge-bridging dimer, [W2O6F4]4−, and the cyclic trimer, [W3O9F6]6−, are also suggested as hydrolysis products. Decomposition of (NH4)3WO3F3 occurs in aqueous solution to give NH4WO3F.  相似文献   

9.
The electrochemical nitrogen reduction reaction (NRR) is a promising energy-efficient and low-emission alternative to the traditional Haber–Bosch process. Usually, the competing hydrogen evolution reaction (HER) and the reaction barrier of ambient electrochemical NRR are significant challenges, making a simultaneous high NH3 formation rate and high Faradic efficiency (FE) difficult. To give effective NRR electrocatalysis and suppressed HER, the surface atomic structure of W18O49, which has exposed active W sites and weak binding for H2, is doped with Fe. A high NH3 formation rate of 24.7 μg h−1 mgcat−1 and a high FE of 20.0 % are achieved at an overpotential of only −0.15 V versus the reversible hydrogen electrode. Ab initio calculations reveal an intercalation-type doping of Fe atoms in the tunnels of the W18O49 crystal structure, which increases the oxygen vacancies and exposes more W active sites, optimizes the nitrogen adsorption energy, and facilitates the electrocatalytic NRR.  相似文献   

10.
Preparation and Structure of Niobium Tungsten Oxides (Nb,W)17O47 with Mixed Valency The formal substitution of 2Nb5+ by Nb4+ or W4+, respectively, and W6+ leads to tungsten niobium oxides (Nb,W)17O47 with mixed valency. The phases Nb8-nW9+nO47 with n = 1 to 5 could be obtained by heating (1 250°) mixtures of NbO2 or WO2, respectively, with Nb2O5 and WO3. The products crystallize with the structure of Nb8W9O47. This is proved by X-ray powder diffraction and transmission electron microscopy. A further decrease of the Nb-content results in two-phase products.  相似文献   

11.
Crystals with the La18W10O57‐type structure (6H and 5H polytypes) were obtained by a self‐flux method from high‐temperature solutions. Some of the crystal samples were studied by single‐crystal X‐ray structure analysis. The diffraction patterns indicated that two phases co‐exist in each sample. The hexagonal lattices have a common period of a ≈ 9.0 Å and are non‐equal in length but have equally oriented superstructure periods 6c (phase I) and 5c (phase II), c ≈ 5.4 Å. The structures of phases I and II were solved in the symmetry groups P2c and P321, respectively, based on the X‐ray data for crystals I and II, with predominant content of the first and second phase. The motif of isolated WO6 prisms with W atoms on the cell edges is common to both phases. WO6 octahedra, both isolated and joined by faces, are distributed along the c axis within the unit cells. Phase I contains extra layers of isolated WO6 octahedra compared to phase II. Tungsten sites in joined octahedra are disordered and partially occupied. Disordering is more expressed in phase II, which in return contains rather more W and O per atom of La. The refined chemical compositions are La18W10O57 for I and La15W8.5O48 for II.  相似文献   

12.
The electrochemical nitrogen reduction reaction (NRR) is a promising energy‐efficient and low‐emission alternative to the traditional Haber–Bosch process. Usually, the competing hydrogen evolution reaction (HER) and the reaction barrier of ambient electrochemical NRR are significant challenges, making a simultaneous high NH3 formation rate and high Faradic efficiency (FE) difficult. To give effective NRR electrocatalysis and suppressed HER, the surface atomic structure of W18O49, which has exposed active W sites and weak binding for H2, is doped with Fe. A high NH3 formation rate of 24.7 μg h?1 mgcat?1 and a high FE of 20.0 % are achieved at an overpotential of only ?0.15 V versus the reversible hydrogen electrode. Ab initio calculations reveal an intercalation‐type doping of Fe atoms in the tunnels of the W18O49 crystal structure, which increases the oxygen vacancies and exposes more W active sites, optimizes the nitrogen adsorption energy, and facilitates the electrocatalytic NRR.  相似文献   

13.
At T 150 K the crystal structure of [Rh(NH3)5Cl]WO4 is studied: a = 11.2374(4) Å, b = 8.4857(3) Å, c = 10.5326(3) Å, V = 1004.36(6) Å3, space group Pnma, Z= 4, d x = 3.117 g/cm3. In the structure, complex ions are bound by N—H…O hydrogen bonds, with the shortest ones of 2.85–2.94 Å. Ionic packing is shown to be considered as rhombohedral with a t ≈ 5.26 Å, αt ≈ 106°. Thermal properties of the salt are studied in the hydrogen atmosphere. The product of thermal decomposition at 750°C is a mixture of three solid solutions of Rhx W 1- x based on fcc, bcc, and hcp structures. All the obtained phases are nanocrystalline. The sizes of coherent scattering regions are 10–12 nm.  相似文献   

14.
In order to determinate the best crystal growth conditions for KY(WO4)2 single-crystals, the investigation of the K2O-Y2O3-WO3 ternary system was undertaken by the study of three isoplethic sections (K2W4O13-Y2O3, K2WO4-KY(WO4)2, K2W2O7-KY(WO4)2). The stability domain and the crystallisation field of the compound were then defined: KY(WO4)2 is not stoichiometric and melts congruently for the composition 0.81(K2O.4WO3)−0.19Y2O3 The low temperature phase belongs to the monoclinic system (s.g. C2/c) with a=10.65(1)Å, b=10.34(1)Å, c=7.54(1)Å, β=130.5(1)°. Its crystallisation field was delimited in temperature and composition: an α-KY(WO4)2 crystal can grow if xY2O3≤0.175.  相似文献   

15.
A New Structure Type for the Rare Earth Oxotungstate FeCe(WO4)W2O8 = FeCe(WO4)3 Single crystals of the hitherto unknown compound FeCe(WO4)3 have been prepared by crystallization from melts of Fe2O3, CeO2 and WO3. It crystallizes with triclinic symmetry, space group P1 , a = 7,486(3); b = 7,528(1); c = 16,502(4) Å, α = 101,00(2); β = 96,62(3); γ = 98,62°; Z = 2. Tungsten shows octahedral and tetrahedral coordination by oxygen. The crystal structure is characterized by layers related to the Scheelite and Wolframite type. Thermogravimetric measurements led to a lost of oxygen during reaction. It results in a decrease of the oxidation states of Fe3+ and Ce4+ respectively, as will be discussed using magnetic measurements and calculations of the Coulomb terms of lattice energy. The structure contains a one-fold coordinated oxygen.  相似文献   

16.
Coordination-chemistry of cis-Trioxotungsten(VI) Complexes. Crystal Structures of LWO3 · 3 H2O, [L′WO2(OH)]Br, [LWO2Br]Br, [L2W2O5](S2O6) · 4 H2O and [LWO2(μ-O)WO(O2)2(OH2)] (L = 1,4,7-Triazacyclonane; L′ = 1,4,7-Trimethyl-1,4,7-triazacyclononane) The cyclic triamines 1,4,7-triazacyclononane (L; C6H15N3) and 1,4,7-trimethyl-1,4,7-triazacyclononane (L′; C9H21N3) react in aqueous solution with WO3 affording LWO3 · 3 H2O, 1 , and L′WO3 · 3 H2O, respectively, which yield [L′WO2(OH)]Br, 2 , and [LWO2Br]Br, 3 , in concentrated HBr solutions. In aqueous CH3SO3H solution 1 dimerizes. The iodide and dithionate 4 salts of [L2W2O5]2+ have been isolated. In 35% H2O2 complex 1 yields the neutral species [LWO2(μ-O)WO(O2)2(H2O)] 5 . The crystal structures of 1 – 5 have been determined by X-ray analysis. Crystal data: 1 : P21/c; a = 7.729(2), b = 14.887(3), c = 10.774(2) Å, β = 90.77(2)°, Z = 4; 2 : Cc; 8.910(3), b = 12.220(6), c = 13.279(6) Å, β = 101.31(3)°, Z = 4; 3 : Cmc21, a = 8.857(5), b = 12.062(7), c = 11.218(7) Å, Z = 4; 4 : Cc, a = 17.601(7), b = 12.906(7), c = 14.107(8) Å, β = 124.08(4)°, Z = 4; 5 : P212121; a = 8.452(4), b = 11.301(6), c = 13.750(6) Å, Z = 4.  相似文献   

17.
The phases occurring in the binary tungsten-oxygen system in the composition region WO3WO2 have been clarified by electron microscopy and powder X-ray diffraction in the temperature range from 723 to 1373 K. There are five structure types in the binary system, besides WO3, viz., the {102} CS structures, the {103} CS structures, W24O68, W18O49, and WO2. The {102} and {103} CS structures, and W24O68 structures, were always disordered and true equilibrium was not achieved even after 5 months of heating at 1373 K. The lowest temperature for the formation of the CS phases was of the order of 873 K, and the disordered W24O68 structure formed at somewhat higher temperatures. The formation of the latter phase was also slower than the formation of the CS phases. The results suggest that elastic strain energy is of importance in controlling the microstructures found in the nonstoichiometric regions.  相似文献   

18.
Hydrogen intercalation via spillover reaction in various tungsten trioxides leads to the formation of blue hydrogen bronzes. These reversible reactions induce changes in the W-O bond system while maintaining the W-O skeleton. The effect of the intercalation process on the host crystalline structure has been studied with respect to the ν(O-W-O) stretching vibration changes and lattice parameter variations by means of infrared and X-ray diffraction measurements. Among the main results, the intercalation process is shown to be strongly influenced by the structural type of the host compound as well as its amorphous versus crystalline nature. For instance, for the ReO3 type oxides (monoclinic and cubic WO3) and hexagonal WO3, ν(O-W-O) shifts to higher frequency are assigned to a shortening effect of W-O bonds. A W-O bond system arrangement is also measured for the crystallized and amorphous hydrates WO3 · H2O, but no detectable changes could be found in the pyrochlore WO3 and in the hydrate WO3·1/3 H2O. Received: 5 March 1997 / Accepted: 21 May 1997  相似文献   

19.
New Heteropolyanions of Tungsten with Vanadium(IV) as a Heteroatom The syntheses of two new heteropolyanions with vanadium as heteroatom are presented. They are characterized by X‐ray structure analysis and vibrational spectra. ((CH3)4N)6Na4[(VO(H2O)2)2(WO2)2(BiW9O33)2]·18H2O (1) crystallises in the triclinic crystal system (P1¯) with a = 13.299(3)Å, b = 13.554(3)Å, c = 18.620(4)Å and α = 90.22(3)°, β = 91.99(3)°, γ = 119.16(3)°. Na5.4K6.6[(VO)3(AsW9O33)2]·29H2O ( 2 ) crystallises in the hexagonal space group P63/mmc with a = 15.124(3)Å and c = 24.209(5)Å. The polyanion in 1 is isostructural to anions of the M2X2W20‐typ with other heteroatoms. They are built up by two β‐B‐[SbW9O33] fragments, which are derived from defect structures of the Keggin anion. These subunits are connected by two formal WO2 groups with further stabilisation by addition of two M(H2O)3 groups leading to the M2X2W20‐type heteropolytungstates. The anion in 2 is a new example of the M3X2W18‐type, which contains two α‐B‐[XW9O33]‐units connected via a belt of three transition metal atoms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号