首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
We discuss how the basic principles of quantum chemistry and quantum mechanics can be and have been applied to a variety of problems in molecular biophysics. First, the historical development of quantum concepts in biophysics is discussed. Next, we describe a series of interesting applications of quantum chemical methods for studying biologically active molecules, molecular structures, and some of the important processes which play a role in living organisms. We discuss the application of quantum chemistry to such processes as energy storage and transformation, and the transmission of genetic information. Quantum chemical approaches are essential to comprehend and understand the molecular nature of these processes. To conclude our work, we present a short discussion of the perspectives of quantum chemical methods in modern biophysics, the field of experimental and theoretical chiral vibrational and electronic spectroscopy.  相似文献   

2.
We review some recent advances in quantum mechanical methods devised specifically for the study of excited electronic state of large size molecules in solution. The adopted theoretical/computational framework is rooted in the density functional theory (DFT) and its time-dependent extension (TD-DFT) for the characterization of ground and excited states, in the polarizable continuum model (PCM) for the treatment of bulk solvent effects, and in time-dependent quantum mechanical methods for chemical dynamics. Selected applications to the simulation of absorption spectra, to the interpretation of time-resolved experiments, and to the computation of dissociative electron transfer rates are presented and discussed.  相似文献   

3.
4.
袁廷  孟婷  李淑花  范楼珍 《应用化学》2018,35(8):871-880
电致发光二极管(LEDs)具有能耗低、寿命长、绿色环保等优点,在固态照明、全色显示等领域具有广阔的应用前景。 与传统的荧光电致LEDs相比,磷光电致LEDs能够同时利用单重态和三重态激子,理论上可以使器件的内量子效率达到100%,突破5%的外量子效率极限。 因此,发展高效的磷光材料以及实现其在电致LEDs中的应用是非常有意义的。 本文综述了目前主要的磷光材料,包括有机金属配合物、纯有机分子、聚合物、金属有机框架材料和碳量子点等,并总结了稀有金属配合物和纯有机分子在电致磷光 LEDs中的研究进展,同时对电致磷光LEDs的发展前景进行展望。  相似文献   

5.
Infrared spectra have been used in many chemical applications, and theoretical calculations have been useful for analyzing these experimental results. While quantum mechanics is used for calculating the spectra for small molecules, classical mechanics is used for larger systems. However, a systematic understanding of the similarities and differences between the two approaches is not clear. Previous studies focused on peak position and relative intensities of the spectra obtained by various quantum and classical methods, but here, we included “absolute” intensities in the evaluation. The infrared spectrum of a one-dimensional (1D) harmonic oscillator (HO) and Morse oscillator were examined using four treatments: quantum, Wigner, truncated Wigner, and classical microcanonical treatments. For a 1D HO with a linear dipole moment function (DMF), the quantum and Wigner treatments give nearly the same spectra. On the other hand, the truncated Wigner underestimates the fundamental transition's intensity by half. In the case of cubic DMF, the truncated Wigner and classical methods fail to reproduce the relative intensity between the fundamental and second overtone transitions. Unfortunately, all the Wigner and classical methods fail to agree with the quantum results for a Morse oscillator with just 1% anharmonicity.  相似文献   

6.
This paper is an overview of the theory of reactive scattering, with emphasis on fully quantum mechanical theories that have been developed to describe simple chemical reactions, especially atom-diatom reactions. We also describe related quasiclassical trajectory applications, and in all of this review the emphasis is on methods and applications concerned with state-resolved reaction dynamics. The review first provides an overview of the development of the theory, including a discussion of computational methods based on coupled channel calculations, variational methods, and wave packet methods. Choices of coordinates, including the use of hyperspherical coordinates are discussed, as are basis set and discrete variational representations. The review also summarizes a number of applications that have been performed, especially the two most comprehensively studied systems, H+H2 and F+H2, along with brief discussions of a large number of other systems, including other hydrogen atom transfer reactions, insertion reactions, electronically nonadiabatic reactions, and reactions involving four or more atoms. For each reaction we describe the method used and important new physical insight extracted from the results.  相似文献   

7.
Quantum dots have emerged as an important class of material that offers great promise to a diverse range of applications ranging from energy conversion to biomedicine. Here, we review the potential of using quantum dots and quantum dot conjugates as sensitizers for photodynamic therapy (PDT). The photophysics of singlet oxygen generation in relation to quantum dot-based energy transfer is discussed and the possibility of using quantum dots as photosensitizer in PDT is assessed, including their current limitations to applications in biological systems. The biggest advantage of quantum dots over molecular photosensitizers that comes into perspective is their tunable optical properties and surface chemistries. Recent developments in the preparation and photophysical characterization of quantum dot energy transfer processes are also presented in this review, to provide insights on the future direction of quantum dot-based photosensitization studies from the viewpoint of our ongoing research.  相似文献   

8.
量子点在生物检测中的应用   总被引:1,自引:0,他引:1  
过去十几年里,量子点从材料科学到生命科学、从基础研究到实际应用都开展了广泛的研究。 量子点在生物成像、光治疗、药物/基因转运、太阳能电池等领域均具有广泛的应用。 通过调节量子点的表面性质,实现量子点与细胞相互作用的可控性是一个关键的问题。 伴随着量子点潜在毒性问题的产生,纳米毒性成为纳米材料安全性评估的重要指标,并且受到科学家们的高度关注。 本文综述了量子点的特性、细胞生物学应用及在生物医药领域相关的细胞毒性研究,并展望了量子点的未来发展趋势。  相似文献   

9.
This review presents a simple introduction on the unique properties and general synthesis of quantum dots (QDs) in which we lay emphasis on the optical applications in the biological system. The detection of biological molecules such as DNA, protein and enzyme, the cell-based analysis and in vivo animal imaging are mainly discussed.  相似文献   

10.
Lu Chen  Heyou Han 《Mikrochimica acta》2014,181(13-14):1485-1495
Near-infrared quantum dots (NIR QDs) represent a powerful material and diagnostic tool owing to their long emission wavelength which extends into the near-infrared region where permeation depths are much larger and where the intrinsic absorbance and autofluorescence of tissue is much smaller compared to shortwave emitting QDs. We are reviewing here recent (2008–2013) methods for the preparation of NIR QDs, their (bio)chemical modifications, and their applications. The article is subdivided into the following sections: (a) Synthesis of NIR QDs; (b) modification of NIR QDs and probe preparation; (c) applications of NIR QDs (with subsections on fluorescence quenching and fluorescence enhancement-based bioanalytical detection, on fluorescence bioimaging, on uses in photovoltaic cells and solar cells, and on molecular detection based on electrogenerated chemiluminescence). We finally make conclusions and discuss current challenges, trends, and future applications. The review contains 119 references. Figure
This review systematically presents the development, preparation methods, modifications and bioapplications of Near-infrared quantum dots (NIR QDs). The review contains 126 references.  相似文献   

11.
The use of semiconductor quantum dots (QDs) in biological sensing and labeling continues to grow with each year. Current and projected applications include use as fluorescent labels for cellular labeling, intracellular sensors, deep-tissue and tumor imaging agents, sensitizers for photodynamic therapy, and more recently interest has been sparked in using them as vectors for studying nanoparticle-mediated drug delivery. Many of these applications will ultimately require the QDs to undergo targeted intracellular delivery, not only to specific cells, but also to a variety of subcellular compartments and organelles. It is apparent that this issue will be critical in determining the efficacy of using QDs, and indeed a variety of other nanoparticles, for these types of applications. In this review, we provide an overview of the current methods for delivering QDs into cells. Methods that are covered include facilitated techniques such as those that utilize specific peptide sequences or polymer delivery reagents and active methods such as electroporation and microinjection. We critically examine the benefits and liabilities of each strategy and illustrate them with selected examples from the literature. Several important related issues such as QD size and surface coating, methods for QD biofunctionalization, cellular physiology and toxicity are also discussed. Finally, we conclude by providing a perspective of how this field can be expected to develop in the future.  相似文献   

12.
Cyclodextrins are able to act as host molecules in supramolecular chemistry with applications ranging from pharmaceutics to detergency. Among guest molecules surfactants play an important role with both fundamental and practical applications. The formation of cyclodextrin/surfactant host–guest compounds leads to an increase in the critical micelle concentration and in the solubility of surfactants. The possibility of changing the balance between several intermolecular forces, and thus allowing the study of, e.g., dehydration and steric hindrance effects upon association, makes surfactants ideal guest molecules for fundamental studies. Therefore, these systems allow for obtaining a deep insight into the host–guest association mechanism. In this paper, we review the influence on the thermodynamic properties of CD–surfactant association by highlighting the effect of different surfactant architectures (single tail, double-tailed, gemini and bolaform), with special emphasis on cationic surfactants. This is complemented with an assessment of the most common analytical techniques used to follow the association process. The applied methods for computation of the association stoichiometry and stability constants are also reviewed and discussed; this is an important point since there are significant discrepancies and scattered data for similar systems in the literature.  相似文献   

13.
Because of the potentially large number of important applications of nonlinear optics, researchers have expended a great deal of effort to optimize the second-order molecular nonlinear-optical response, called the hyperpolarizability. The focus of our present studies is the intrinsic hyperpolarizability, which is a scale-invariant quantity that removes the effects of simple scaling, thus being the relevant quantity for comparing molecules of varying sizes. Past theoretical studies have focused on structural properties that optimize the intrinsic hyperpolarizability, which have characterized the structure of the quantum system based on the potential energy function, placement of nuclei, geometry, and the effects of external electric and magnetic fields. Those previous studies focused on single-electron models under the influence of an average potential. In the present studies, we generalize our calculations to two-electron systems and include electron interactions. As with the single-electron studies, universal properties are found that are common to all systems-be they molecules, nanoparticles, or quantum gases-when the hyperpolarizability is near the fundamental limit.  相似文献   

14.
Dendrimers are three dimensional nanosized synthetic molecules that have internal cavities and numerous surface groups. In recent times they have received increased attention in sensing applications. For dendrimers to be used as sensors, they most commonly require functionalization at their surface. This is because the surface is generally the first point of contact between the dendrimer and the outside world, hence surface functionalization serves to selectively home in on the target analyte. Further, sensor signals may be transmitted through surface functionalities e.g. fluorochromic molecules. It is therefore important to document surface functionalization approaches. Dendrimers with amine surface groups have the advantage of being able to be conjugated to other molecules via an amide linkage, which is one of the most fundamental and widespread chemical bonds in nature. In this paper we demonstrate the properties of dendrimers that make them so applicable to sensing. We review several methods for functionalizing dendrimers via an amide linkage, as well as present a review of surface functionalized polyamidoamine, polyamine, and polypeptide dendrimers that have been employed for biological, chemical and molecular sensing.  相似文献   

15.
16.
A variety of coating techniques are available for medical devices to be tailored with surface properties aimed at optimizing their performance in biological environments. Cold spray, as a member of the thermal spray family, is now being exploited to efficiently deposit micro- to nanometer sized metallic or non-metallic particles on surgical implants, medical devices and surfaces in the healthcare environment to create functional coatings. Cold spray has attracted attention in the context of biomedical applications due to the fact that multiple materials can be combined easily at the surface of these devices, and that oxygen-sensitive and heat-sensitive organic molecules, including bioactive compounds, can be incorporated in these coatings due to the relatively low temperatures used in the process. The ability to maintain material and chemical properties and the ability to create functional coatings make the cold spray process particularly suitable for applications in the MedTech industry sector.This review explores the fabrication of cold spray coatings including the types of materials that have been used for biomedical purposes, provides a detailed analysis of the factors affecting cold spray coating performance, and gives an overview over the most recent developments related to the technology. Cold spray coatings that have been used until this point in time in biomedical applications can be broadly classified as biocompatible coatings, anti-infective coatings, anti-corrosive coatings, and wear-resistant coatings. In addition, this review discusses how these applications can be broadened, for example by providing antiviral effect against coronavirus (COVID-19). While we highlight examples for multifunctional cold spray coatings, we also explore the current challenges and opportunities for cold spray coatings in the biomedical field and predict likely future developments.  相似文献   

17.
《中国化学快报》2023,34(8):108124
The design and synthesis of photoactive macrocyclic molecules continue to attract attention because such species play important roles in supramolecular chemistry as well as photoelectronic applications. Donor-acceptor (D-A) conjugated macrocycles are an emerging class of photoactive molecules due to their D-A conjugated structural characteristics and tunable optical properties. In addition, the well-defined cavities in such D-A macrocycles endow them with versatile host-guest properties. In this review, we provide a comprehensive summary of D-A conjugated macrocycle chemistry, detailing recent progress in the area of synthetic methods, optical properties, host-guest chemistry and applications of the underlying chemistry to chemical sensors, bioimaging and photoelectronic devices. Our objective is to provide not only a review of the fundamental findings, but also to outline future research directions where D-A conjugated macrocycles and their constructs may have a role to play.  相似文献   

18.
Methods for the production of cold atomic and molecular samples relying on the deceleration of pulsed supersonic beams are described and a review of the corresponding literature is presented. These methods include multistage Stark deceleration, multistage Zeeman deceleration, and Rydberg-Stark deceleration. Recent applications of the cold samples produced with these techniques are summarized.  相似文献   

19.
梅晔  何晓  季长鸽  张大为  张增辉 《化学进展》2012,24(6):1058-1064
碎片化方法为量子化学方法的发展以及在大分子体系的应用开辟了新的道路。在过去的十年里,我们见证了该领域的诸多成果,并且我们相信该方法的发展仍将持续下去。这篇文章简单回顾了近期碎片化方法在大分子电子结构计算领域的进展,重点突出中国学者在该领域的贡献。  相似文献   

20.
新型主体化合物在生物活性分子分析中的应用新进展   总被引:8,自引:0,他引:8  
唐波  马骊  王洪鉴 《分析化学》2002,30(4):482-490
主体化合物对客体分子具有高度的分子识别能力,对从分子水平上研究生物体内各种信息传递及酶与底物,抗体与抗原的结合等过程具有重要的理论与实际意义,它的应用为发展新型生物活性分子分析方法提供了广阔的前景,本文着重评述近年来冠醚,环糊精,杯芳烃及卟啉类超分子主体化合物在生物活性分子分析方面的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号