首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nano sulfated titania was tested as catalyst for esterification of free fatty acids, specially methanolic and ethanolic esterification of stearic acid (biodiesels). Factorial design evidenced a positive effect of reaction temperature, amount of catalyst, and solvents on ester conversion. This nano-sized sulfated titania has been prepared by a sol-gel hydrothermal process. This prepared sulfated titania showed high catalytic activity in direct esterification of fatty acids as well as benzoic acids with various alcohols and phenols under solvent-free conditions. This method is of great value because of its environmentally benign character, easy handling, high yields, convenient operation, and green. FT-IR studies are shown that the catalyst can be reused for acylation without loss of catalytic activity.  相似文献   

2.
Nanoscaled spherical silica particles were directly coated with the titania nanoparticles by means of a heterogenic coagulation. Silica was prepared by the Stöber method, titania by a hydrolysis–condensation reaction of tetrapropylorthotitanate under acidic conditions. The on-line tracking of the coating process was performed by measuring the change in zeta potential during the gradual addition of a titania sol to the spherical silica particles. Silica particles of various sizes were used to determine the consumption of the titania sol in the dependence upon the particle size. The coated and uncoated particles were characterized by zeta-potential measurements, acoustic attenuation spectroscopy, dynamic light scattering, and scanning electron microscopy.  相似文献   

3.
Nanocrystalline titania powders were synthesized at low temperature (⩽100°C) by a sol–gel method that achieved fine control of particle size and polymorph fraction. X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–Vis spectroscopy were used to characterize the phase assemblages, crystal size and band gap of the powders. It was demonstrated that larger, well-ordered titania crystals can be obtained by increasing aging temperature and time. These processing parameters can be adjusted to select specific polymorphs from the gel precursors with particular size and shape. The quantum size effect was observed in the size-controlled nanocrystalline titania particles, leading to a blue shift in UV absorption with decreasing in particle size. The anatase to rutile transformation, which may proceed with brookite as a transition phase, is dependent on both particle size and surface structure of the nascent crystals.  相似文献   

4.
MCM-41分子筛担载纳米TiO2复合材料光催化降解罗丹明B   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法将TiO2担载在介孔MCM-41分子筛上, 制备了不同TiO2含量的系列TiO2/MCM-41复合材料, 利用X射线衍射、N2吸附、紫外-可见光谱和透射电镜等方法对其进行表征. TiO2的晶型为锐钛矿相, 复合材料的比表面积和孔体积随其中TiO2担载量(复合材料中TiO2与MCM-41的质量比)的增加而减小, TiO2的平均粒径随其担载量的增加而增大. 以罗丹明B的光催化降解为探针反应, 评价了TiO2/MCM-41复合材料的光催化降解活性. 结果表明, 在紫外光照射下, 罗丹明B在该复合材料上的光催化降解反应遵循一级反应动力学, 复合材料对罗丹明B的光催化降解活性明显高于商用TiO2 (P-25), 复合材料的光催化降解活性由复合材料的吸附能力和所含TiO2的光催化活性共同决定.  相似文献   

5.
Solid-supported metal catalysts have been widely used in industrial processes. The morphology of coated metal on the support is usually an important factor affecting the efficiency of the catalyst. In this study, a photocatalytic process is utilized to control the morphology of platinum particles deposited on titania (Degussa P-25). More specifically, the effect of pH on the morphology and the valence state of platinum nanoparticles was systemically investigated. It is found that, via a simple pH-controlled process, various states of platinum (Pt0, PtIIO, or PtIVO2) can be deposited onto the support directly at will. In this paper, the mechanism of morphology control and the key influencing factors at different pH regimes will be discussed. Followed by photodeposition, a H2 thermal treatment process was employed to convert the oxides into metal platinum with narrow size distribution and even coverage on the supporting titania. Various techniques such as transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive analysis of X-rays, and X-ray photoelectron spectroscopy were employed to characterize the prepared titania-supported platinum particles.  相似文献   

6.
Titania nanoparticles synthesis in mesoporous molecular sieve MCM-41   总被引:2,自引:0,他引:2  
Nanocrystalline titanium oxide (TiO(2)) is one of the most useful oxide material, because of its widespread applications in photocatalysis, solar energy conversion, sensors and optoelectronics. The control of particle size and monodispersity of TiO(2) nanoparticles is a challenging task. The use of MCM-41, an inorganic template of uniform pore size (2-10 nm), can overcome this difficulty and produce stable nanoparticles of uniform size and shape. Here, we demonstrate the synthesis of titania nanoparticles inside the pores of silica based MCM-41 forming a TiO(2)/Si-MCM composite. Composites are formed in the alcoholic medium by incipient wetness impregnation method. Titania particles of average 3 nm size are obtained. Effect of silica and titania precursors on the quality of nanoparticles has been investigated. The characterization of titania-MCM-41 composites has been carried out using a variety of techniques like UV-vis absorption spectroscopy, X-ray diffraction, FT-IR spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. It has been found that the titania particles are co-ordinated with Si-MCM by SiOTi covalent bond.  相似文献   

7.
Acrylic resin/titania organic–inorganic hybrid materials were prepared by mixing titania sol produced by the sol–gel process with synthesized thermoplastic acrylic resins. The effects of the amounts of water and acid on hydrolysis and condensation of the sol–gel precursor (titanium n‐butoxide) were characterized by nuclear magnetic resonance, and their corresponding influences on the structure and properties of the hybrid films were investigated by small‐angle X‐ray scattering (SAXS), atomic force microscopy, dynamical mechanical analysis, an Instron testing machine, and ultraviolet–visible spectroscopy. SAXS indicated an open structure and nanoscale size for the titania phase of the hybrids. Higher titania content and a greater amount of water or acid in the sol–gel process resulted in titania domains that were larger size and had a more compact structure. The mechanical and UV‐shielding properties of the organic polymer obviously were improved with titania embedded. As the amount of water or acid in the sol–gel process increased, integrative mechanical properties decreased, with the amount of water having a greater impact than the amount of acid on the structure and optical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3682–3694, 2004  相似文献   

8.
Nanocrystalline titania films were prepared by a complexing agent-assisted sol-gel dip-coating process. The effect of acetylacetone, diethanolamine and polyethylene glycol on the structure of the heat-treated titania films was examined by Raman and FTIR spectroscopy and X-ray diffraction. The effect the complexing agents have on the anatase to rutile phase transition during the heat treatment process is studied. The understanding of this effect is expected to enhance our capacity to tailor the composition and morphology of films and thus their properties. The Raman and the infrared spectra of nanocrystalline titania films and the changes induced by the heat treatment were also investigated. We have also studied the size of the crystallites in TiO2 films and its dependence on the type of complexing agent used.  相似文献   

9.
Gold/titania catalysts are widely used for key reactions, notably including the selective oxidation of alcohols in the liquid phase. Our large‐scale ab initio simulations disclose that the liquid‐phase reaction mechanism is distinctly different from that in the gas phase because of active participation of water molecules. While concerted charge transfers related to O2 splitting and abstraction of both protonic and hydridic hydrogens are enforced under dry conditions, stepwise charge transfer is preferred in the condensed phase. Dissociation of reactive water molecules and subsequent Grotthuss migration of protonic defects, H+(aq), allows for such a decoupling of the oxidation process, both in time and space. It is expected that these observations are paradigmatic for heterogeneous catalysis in aqueous phases.  相似文献   

10.

The paper focuses on the optimization procedure concerning the synthesis method resulting in highly ordered titania nanotubes doped with iodine atoms. The doping process was based on the electrochemical treatment of a titania nanotube layer immersed in a potassium iodide (KI) solution acting as an iodine precursor. A number of endeavors were undertaken in order to optimize the doping conditions. Electrolyte concentration, reaction voltage, and time/duration were the main factors that influenced the iodine (I)-doping effect on the photoactivity. The parameters of electrochemical doping that result in a material characterized by the highest photocurrent density are as follows: reaction voltage of 1.5 V, duration of 15 min, and 0.1 M KI. Different spectroscopic techniques, i.e., UV–Vis spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the absorbance capability and the crystalline phase, to confirm the presence of iodine atoms and to study the nature of chemical compounds. The morphology inspection performed by means of scanning electron microscopy shows that the doping process does not affect the ordered tubular architecture. The photocurrent densities of the I-doped sample were six times higher in comparison to those generated by the pure titania nanotube electrode. Moreover, doped samples act as a much better catalyst in the photodegradation process of methylene blue and formation of hydroxyl radicals (•OH) than undoped samples.

  相似文献   

11.
Tough glass-ceramic material of special mechanical properties with nanosize crystal phases formed by appropriately controlled crystallization was studied by Raman spectroscopy. It was obtained by TiO2 activated crystallization of Mg-aluminosilicate glass of SiO2-Al2O3-MgO-TiO2-ZnO composition. Crystallization was preceded by a change in the TiO2 structural position and state, which is manifested by a changed color of glass from yellow into blue shortly before the glass transformation (Tg) temperature. Raman spectroscopy was applied to explain the mechanism of this process and to establish the role of TiO2 in the early stage of glass crystallization that precedes a complete crystal phase formation. The starting glasses were found in almost complete disorder, since all bands were weak, broad and dominated by a Bose band at about 90 cm-1. After the sample annealing all bands turned out better resolved and the Bose band practically disappeared, both confirming the amorphous structure reorganization process. A multiplet observed in the vicinity of 150 cm-1 we assigned to the anatase and other titania structures that can be considered prime centers of crystallization. Finally, in the closest neighborhood of the Rayleigh line the low frequency mode characterizing nanoparticles was observed. According to this band theory, the mean size of initial titania crystallites is about 10nm for all samples, but the size distribution varies within factor two among them.  相似文献   

12.
In this study, the polypyrrole–titania nanotube hybrid has been synthesized for an electrochemical supercapacitor application. The highly ordered and independent titania nanotube array is fabricated by an electro-oxidation of titanium sheet through an electrochemical anodization process in an aqueous solution containing ammonium fluoride, phosphoric acid and ethylene glycol. The polypyrrole–titania nanotube hybrid is then prepared by electrodepositing the conducting polypyrrole into well-aligned titania nanotubes through a normal pulse voltammetry deposition process in an organic acetonitrile solution containing pyrrole monomer and lithium perchlorate. The morphology and microstructure of polypyrrole–titania nanotube hybrid are characterized by scanning electron microscopy, infrared spectroscopy and Raman spectroscopy. The electrochemical capacitance performance is determined by cyclic voltammetry and charge/discharge measurement. It indicates that the polypyrrole film can been uniformly deposited on both surfaces of titania nanotube walls, demonstrating a heterogeneous coaxial nanotube structure. The specific capacitance of polypyrrole–titania nanotube hybrid is determined to be 179?F?g?1 based on the polypyrrole mass. The specific energy and specific power are 7.8?Wh?kg?1 and 2.8?kW?kg?1 at a constant charge/discharge current of 1.85?mA?cm?2, respectively. The retained specific capacitance still keeps 85% of the initial capacity even after 200 cycle numbers. This result demonstrates the satisfying stability and durability of PPy–TiO2 nanotube hybrid electrode in a cyclic charge/discharge process. Such a composite electrode material with highly ordered and coaxial nanotube hybrid structure can contribute high energy storage for supercapacitor applications.  相似文献   

13.
Hydrophilic interaction LC was investigated in hydro‐organic and nonaqueous elution modes on a titania column by using a set of N‐methyl xanthines as neutral polar probes. To get information regarding the mechanisms that are behind the discrimination of these analytes in hydrophilic interaction, we focused our study on the type and amount of organic modifier as a critical yet rarely explored mobile phase parameter. Several alcohols such as methanol, ethanol, and isopropanol were studied as substitutes to acetonitrile in hydro‐organic elution mode. Compared to silica, the investigation of the eluotropic series of these alcohols on titania highlighted a different implication in the retention mechanism of the xanthine derivatives. At low amounts of protic solvents, the adsorption mainly characterized the retention of analytes on bare silica; whereas mixed interactions including adsorption and ligand exchange were identified on native titania. To investigate the peculiar behavior of alcohols on the metal oxide, methanol, ethanol, and ethylene glycol were tested in replacement of water in polar‐organic elution mode. Distinctive effects on the chromatographic retention and selectivity of xanthines were noticed for the dihydric alcohol, which was found to be a stronger eluting component than water on titania.  相似文献   

14.
According to textbooks, tertiary alcohols are inert towards oxidation. The photocatalysis of tertiary alcohols under highly defined vacuum conditions on a titania single crystal reveals unexpected and new reactions, which can be described as disproportionation into an alkane and the respective ketone. In contrast to primary and secondary alcohols, in tertiary alcohols the absence of an α‐H leads to a C?C‐bond cleavage instead of the common abstraction of hydrogen. Surprisingly, bonds to methyl groups are not cleaved when the alcohol exhibits longer alkyl chains in the α‐position to the hydroxyl group. The presence of platinum loadings not only increases the reaction rate but also opens up a new reaction channel: the formation of molecular hydrogen and a long‐chain alkane resulting from recombination of two alkyl moieties. This work demonstrates that new synthetic routes may become possible by introducing photocatalytic reaction steps in which the co‐catalysts may also play a decisive role.  相似文献   

15.
Selective oxidation of higher alcohols using heterogeneous catalysts is an important reaction in the synthesis of fine chemicals with added value. Though the process for primary alcohol oxidation is industrially established, there is still a lack of fundamental understanding considering the complexity of the catalysts and their dynamics under reaction conditions, especially when higher alcohols and liquid-phase reaction media are involved. Additionally, new materials should be developed offering higher activity, selectivity, and stability. This can be achieved by unraveling the structure–performance correlations of these catalysts under reaction conditions. In this regard, researchers are encouraged to develop more advanced characterization techniques to address the complex interplay between the solid surface, the dissolved reactants, and the solvent. In this mini-review, we report some of the most important approaches taken in the field and give a perspective on how to tackle the complex challenges for different approaches in alcohol oxidation while providing insight into the remaining challenges.  相似文献   

16.
Organic pigment particles coated with titania via sol-gel process   总被引:1,自引:0,他引:1  
This paper presented a novel method for the organic pigment coated with titania to improve the weatherability and dispersion ability in waterborne system. The organic pigment was first orderly adsorbed by two kinds of electrolyte: poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC), then coated by titania via sol-gel process from titanium n-butoxide (TBOT). The effects of the numbers of polyelectrolyte layer, water content, and TBOT content on the morphology, particle size, surface element composition, porosity and pore size, thermal stability, and UV shielding property of the organic pigment were systematically investigated. It was found that only two layers of electrolyte adsorption and one-step coating of titania could obviously enhance the UV shielding property even thermal stability of the organic pigment. The thickness of the titania layer could be easily tailored by TBOT content.  相似文献   

17.
The role of the oxidation state of a platinum polycrystalline surface in the electrocatalytic oxidation of C1 to C4 primary alcohols has been studied by using electrochemical techniques, in situ FTIR spectroscopy and X-ray photoelectron spectroscopy. The results revealed that the oxidation state of the Pt surface plays a key role in the oxidation of primary alcohols, and demonstrated that the oxidation of C1 to C4 primary alcohols on a Pt electrode is controlled by the formation of surface oxides on the Pt electrode at different potentials. It was found that the dependence of the reaction process on the oxidation states of the platinum surface yielded similar features in the cyclic voltammogram for oxidation of different primary alcohols at a Pt electrode. According to the effects in the oxidation of primary alcohols, the surface oxides of platinum may be classified as active and poison species. The Pt surface oxides of higher oxidation states (Pt(OH)3 and PtO2) formed at potentials above 1.0 V (SCE) were identified as poison species, while other lower oxidation states of Pt surface oxides such as PtOH, Pt(OH)2 and PtO may be identified as the possible active species for primary alcohol oxidation.  相似文献   

18.
In this review,development of supported catalysts for the dehydrogenative synthesis of benzimidazoles from primary alcohols and 1,2-phenyIenediamine derivatives is briefly summarized.Among them,titania-supported iridium catalysts showed excellent activities under mild reaction conditions.Remarkably,the low-temperature activity of iridium catalyst was significantly affected by titania supports,and the reaction of 1,2-phenylenediamine and benzyl alcohol in the presence of rutilesupported catalysts proceeded smoothly at 100℃to give 2-phenylbenzimidazole in high yields of up to 88%,On the other hand,catalysts supported on anatase generally showed poor activity at 100℃.A significant relationship between CO uptake and the activity of titania-supported catalysts has been reported,indicating that well-reduced iridium species on rutile would be responsible for the predominant catalytic activity.The present results suggest the importance of the selection of suitable titania supports for the iridium catalysts.  相似文献   

19.
20.
微波载银对纳米二氧化钛相变及光催化性能的增效作用   总被引:4,自引:1,他引:3  
用微波法制备系列载Ag纳米TiO2,发现微波载Ag对纳米TiO2的相变和光催化活性具有增效作用。采用X-射线粉末衍射(XRD),透射电镜(TEM),X-射线光电子能谱仪(XPS),激光Raman光谱及漫反射光谱(DRS)方法对比研究纳米TiO2与载Ag纳米TiO2的性质。结果表明,所制得载Ag纳米TiO2是以锐钛矿为主相的混晶,平均粒径约为10 nm,负载Ag促进纳米TiO2中锐钛矿相转化金红石相相变,减小纳米晶尺寸,并使纳米TiO2光响应范围向可见光区移动 6 nm。在低浓度范围,微波法能均匀地将Ag负载于纳米TiO2表面,并以Ag0/Ag+的形式存在,抑制光生电子与光生空穴复合,大大地提高了纳米TiO2光催化活性。在近紫外-可见光照射下,载Ag量为0.05 mol %的纳米TiO2对罗丹明B的光催化降解效果最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号