首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal nanoparticles with different shapes have different crystallographic faces. It is therefore of interest to study the effect of the shape of metal nanoparticles on their catalytic activity in various organic and inorganic reactions. Truncated triangular silver nanoplates with well‐defined planes were synthesized by a simple solvothermal approach. The activity of these truncated triangular silver nanoparticles was compared with that of cubic and near‐spherical silver nanoparticles in the oxidation of styrene in colloidal solution. It was found that the crystal faces of silver nanoparticles play an essential role in determining the catalytic oxidation properties. The silver nanocubes had the {100} crystal faces as the basal plane, whereas truncated triangular nanoplates and near‐spherical nanoparticles predominantly exposed the most‐stable {111} crystal faces. As a result, the rate of the reaction over the nanocubes was more than 14 times higher than that on nanoplates and four times higher than that on near‐spherical nanoparticles.  相似文献   

2.
Sliver nanoplates were prepared through a visible light induced reduction process by a reaction between sodium citrate and silver nitrate in an aqueous solvent at room temperature. UV-Vis spectra were employed to monitor the growth of the silver nanoplates. The resulting spectra indicated that, at an early stage,the products were spherical particles with planar nanoparticles appearing and growing subsequently. In the last stages of the process, some spherical particles were consumed by the growth of the nanoparticles,through an Ostwald ripening mechanism. Furthermore, it was found that the addition of either Poly(Vinyl Pyrrolidone) (PVP) or excessive citrate could stabilize the colloidal system effectively, and that rigorous stirring was necessary for the anticipant products. Introduction of a large quantities of sodium hydroxide can dramatically accelerate the reactive rate of the photoreduction process.  相似文献   

3.
The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO(3) with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag(+) ions was observed in <1 min with Ag nanoparticle formation reaching 90% completion in <50 min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag(+)]=0.01 M and 30°C, largely spherical nanoparticles with diameters in the range of 5-51 nm were generated, while flower-like particle clusters (mean size=104 nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86-108 nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12 nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet-visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography-mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents.  相似文献   

4.
Triangular silver nanoplates exhibit excellent optical and catalytic properties in many fields, such as catalysts, sensors and bio-medicine. In this paper, triangular nanoplates were generated just in the presence of sodium citrate through a light-induced ripening process, which were converted from spherical silver nanoparticles by reducing silver nitrate with sodium borohydride. By using UV–Vis spectroscopy, particle size analyzer, transmission electron microscopy (TEM) and Ag+ concentration analysis, the effects of precursors during the preparation of triangular nanoplates were systematically investigated and the optimal experimental conditions were determined. Based on density functional theory (DFT), the adsorption energies of citrate ion, malate ion and tartronate ion on Ag (1 1 1), (1 1 0) and (1 0 0) were calculated. In addition, theoretical calculations coupled with experimental observations showed that citrate ion as capping agent could more preferentially bind to Ag (1 1 1) and thus blocked Ag (1 1 1) while only allowing extensive growth along the lateral direction. This well explains sodium citrate is an efficient agent in preparing triangular silver nanoplates.  相似文献   

5.
A solution chemistry method for transforming polycrystalline Ag spherical particles into single crystalline triangular Ag nanoplates has been developed. The synthesis consists of three consecutive steps: (1) the synthesis of Ag nanospheres by NaBH(4) reduction of AgNO(3) in the presence of sodium citrate; (2) the conversion of citrate-stabilized Ag nanospheres into SDS (sodium dodecyl sulfate)-stabilized Ag nanospheres, and (3) the aging of the SDS-stabilized Ag nanospheres in 0.01 M NaCl solution. Our study indicates that the shape evolved through a Ag nanoparticle dissolution- and re-deposition process; and demonstrated the critical role of SDS in the process: SDS regulates the dynamics in the dissolved O(2)/Cl(-) etching of the Ag nanospheres and the reduction of the released Ag(+) by citrate ions in the same solution. SDS also functions as a shape-directing agent to assimilate the Ag(0) atoms into single crystalline triangular Ag nanoplates. A model for the shape conversion is also proposed which provides the clue for the synthesis of anisotropic Ag nanoparticles with other shapes (rods, wires, cubes, etc.).  相似文献   

6.
The monodisperse silver nanoparticles were synthesized by one-step reduction of silver ions in the alkaline subphase beneath vitamin E (VE) Langmuir monolayers. The monolayers and silver nanocomposite LB films were characterized by surface pressure-area (pi-A) isotherms, transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-vis), selected area electron diffraction (SAED), Fourier transform infrared transmission spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), respectively. The results showed that the limiting area/VE molecule on different subphases varied. The phenolic groups in the VE molecules were converted to a quinone structure, and the silver ions were mainly reduced to ellipsoidal and spherical nanoparticles. The arrangement of the nanoparticles changed from sparseness to compactness with reaction time. The electron diffraction pattern indicated that the silver nanoparticles were face-centered cubic (fcc) polycrystalline. Silver nanocomposite LB films with excellent quality could be formed on different substrates, indicating that the transfer ratio of monolayer containing silver nanoparticles is close to unity. The dynamic process of reduction of silver ions by VE LB films was also studied through monitoring the conductivity of an Ag2SO4 alkaline solution.  相似文献   

7.
The flower-like silver nanoparticles have been synthesized by reducing silver nitrate (AgNO3) with ascorbic acid (AA) as the reductant and polyvinyl pyrrolidone (PVP) as the capping agent under vigorous stirring. Such flower-like nanoparticles are aggregates of small nanoplates and nanorods. They were tested as substrates for the surface-enhanced Raman scattering (SERS), showing high sensitivity for detecting Rhodamine 6G (R6G) at a concentration as low as 10-7 mol/L. It has been found that replacing mechanical stirring with ultrasound sonication would drastically change the particle morphology, from flower-like nanoparticles to well-dispersed smaller nanoparticles. Furthermore, when trace amounts of NaCl were added into the reagents, well-dispersed Ag nanoparticles formed even in vigorous stirring. These phenomena can be explained with the diffusion and reactant supply during nucleation and growth of Ag nanoparticles.  相似文献   

8.
王悦辉  周济  王婷 《无机化学学报》2007,23(8):1485-1490
Stable aqueous dispersive colloidal Ag nanoparticles were prepared by reducing silver nitrate with sodium borohydride in the presence of 3-mercaptopropionic acid. The formation process of the Ag nanoparticles was investigated by UV-Visible spectroscopy and transmission electron microscopy. The results show that the spherical and rodlike particles and aggregates are formed in the initial stage of the reaction, then the rodlike particles and aggregates are gradually decomposed into small spherical particles, and the final obtained Ag nanoparticles with an average size of 8 nm are in uniform shapes and narrow size distribution, and the colloid remains stable for more than one month, which makes it convenient for use in practice. The presence of capping agent plays an extra role over nanoparticles stabilization and morphology. The presence of capping agent on the surface of Ag nanoparticle is confirmed by the X-ray photoelectron spectroscopy. It is found that Ag nanoparticles are negatively charged in alkaline condition, whereas they are positively charged in acid condition. Electrosteric effect is responsible for their long-term stability.  相似文献   

9.
在线性壳聚糖膜内原位还原制备银纳米粒子及银单晶体   总被引:10,自引:0,他引:10  
采用光还原方法,在线性壳聚糖膜内原位还原获得球形银粒子(粒径10~30 nm)和外观呈三角形、六边形的银单晶体(边长200~2000 nm);采用电化学方法,在壳聚糖膜内制备了球形银纳米粒子,粒径为5~8 nm.用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、红外光谱(IR)和X射线衍射(XRD)等测试技术对壳聚糖/银复合物进行了表征,对光还原过程中银晶体结构由多晶到单晶的转变原因进行了初步的分析和探讨.  相似文献   

10.

Visible-light-driven heterostructure Ag/Bi2WO6 nanocomposites were prepared by transforming Ag+ ions into metallic Ag0 nanoparticles loaded on top of Bi2WO6 nanoplates under visible light irradiation for 1 h. XRD, XPS, SEM and TEM analyses indicated that spherical metallic Ag nanoparticles were uniformly dispersed on top of orthorhombic Bi2WO6 thin nanoplates. Rhodamine B (RhB) was used as a dye model for investigation of photocatalytic performance of Bi2WO6 nanoplates with different weight contents of Ag nanoparticles illuminated by visible radiation. In this research, 10% Ag/Bi2WO6 nanocomposites have the highest photocatalytic activity in the degradation of RhB at 94.21% within 210 min because of the rapid diffusion of electronic charge through the Schottky barrier between metallic Ag nanoparticles and Bi2WO6 thin nanoplates, good electrical conductivity of metallic Ag nanoparticles, inhibited recombination of charge carriers and enhanced photocatalytic activity of Ag/Bi2WO6 nanocomposites. Main active species of the photocatalysis and stability of the photocatalyst were also evaluated.

  相似文献   

11.
In this work we have carried out systematic studies and identified the critical role of hydrogen peroxide instead of the generally believed citrate in the well-known chemical reduction route to silver nanoplates. This improved understanding allows us to develop consistently reproducible processes for the synthesis of nanoplates with high efficiency and yields. By harnessing the oxidative power of H(2)O(2), various silver sources including silver salts and metallic silver can be directly converted to nanoplates with the assistance of an appropriate capping ligand, thus significantly enhancing the reproducibility of the synthesis. Contrary to the previous conclusion that citrate is the key component, we have determined that the group of ligands with selective adhesion to Ag (111) facets can be expanded to many di- and tricarboxylate compounds whose two nearest carboxylate groups are separated by two or three carbon atoms. We have also found that the widely used secondary ligand polyvinylpyrrolidone can be replaced by many hydroxyl group-containing compounds or even removed entirely while still producing nanoplates of excellent uniformity and stability. In addition to the general understanding of NaBH(4) as a reducing agent, it has also been found to act as a capping agent to stabilize the silver nanoparticles, prolong the initiation time required for nanoplate nucleation, and contribute to the control of the thickness as well as the aspect ratio of silver nanoplates. The improved insight into the specific roles of the reaction components and significantly enhanced reproducibility are expected to help elucidate the formation mechanism of this interesting nanostructure.  相似文献   

12.
有机分子CTAB对银纳米颗粒形貌的影响   总被引:2,自引:0,他引:2  
报道了一种有效调节银纳米颗粒形貌的特殊方法.在不同浓度的CTAB有机分子作用下,片状三角形银纳米颗粒形貌发生改变,形成圆形和纺锤形等特殊形貌的银纳米片,研究了CTAB浓度对银纳米颗粒形貌的影响,从实验结果分析了银纳米颗粒形貌发生改变的主要因素.  相似文献   

13.
在十六烷基三甲基溴化铵(CTAB)存在下, 硝酸银与没食子酸丙酯在碱性介质中发生还原反应, 制得纳米银; 考察了反应时间、 氢氧化钠浓度、 反应温度以及PG/Ag+浓度比等条件对合成纳米银粒子的影响. 利用扫描电子显微镜对纳米银颗粒形貌和尺寸进行了表征, 结果表明获得了分散性良好的球形粒子. 实验中还发现在还原银离子制备纳米银过程中会产生强烈的表面等离子共振峰, 用紫外-可见光谱监测制备过程得到的纳米银紫外吸收带范围为400~450 nm, 最大吸收波长为420 nm, 光谱强度与抗氧化剂的浓度成正比. 将纳米银的这一特性用于定量测定没食子酸丙酯(PG)、 二丁基羟基甲苯(BHT)、 叔丁基对羟基茴香醚(BHA)和叔丁基对苯二酚(TBHQ)等抗氧化剂, 所得检出限分别为0.0752, 0.1242, 0.0693和0.0701 mg/L, 线性范围分别为0.2~1.8, 0.2~3.4, 0.2~3.4和0.2~3.0 mg/L.  相似文献   

14.
We report a new simple method to fabricate a highly active SERS substrate consisting of poly‐m‐phenylenediamine/polyacrylonitrile (PmPD/PAN) decorated with Ag nanoplates. The formation mechanism of Ag nanoplates is investigated. The synthetic process of the Ag nanoplate‐decorated PmPD/PAN (Ag nanoplates@PmPD/PAN) nanofiber mats consists of the assembly of Ag nanoparticles on the surface of PmPD/PAN nanofibers as crystal nuclei followed by in situ growth of Ag nanoparticles exclusively into nanoplates. Both the reducibility of the polymer and the concentration of AgNO3 are found to play important roles in the formation and the density of Ag nanoplates. The optimized Ag nanoplates@PmPD/PAN nanofiber mats exhibit excellent activity and reproducibility in surface‐enhanced Raman scattering (SERS) detection of 4‐mercaptobenzoic acid (4‐MBA) with a detection limit of 10?10 m , making the Ag nanoplates@PmPD/PAN nanofiber mats a promising substrate for SERS detection of chemical molecules. In addition, this work also provides a design and fabrication process for a 3D SERS substrate made of a reducible polymer with noble metals.  相似文献   

15.
Silver nanoparticles were prepared by the reduction of AgNO(3) with aniline in dilute aqueous solutions containing cetyltrimethlyammonium bromide, CTAB. Nanoparticles growth was assessed by UV-vis spectroscopy and the average particle size and the size distribution were determined from transmission electron microscopy, TEM. As the reaction proceeds, a typical plasmon absorption band at 390-450nm appears for the silver nanoparticles and the intensities increase with the time. Effects of [aniline], [CTAB] and [Ag(+)] on the particle formation rate were analyzed. The apparent rate constants for the formation of silver nanoparticles first increased until it reached a maximum then decreased with [aniline]. TEM photographs indicate that the silver sol consist of well dispersed agglomerates of spherical shape nanoparticles with particle size range from 10 to 30nm. Aniline concentrations have no significant effect on the shape, size and the size distribution of Ag-nanoparticles. Aniline acts as a reducing as well as adsorbing agent in the preparation of roughly spherical, agglomerated and face-centered-cubic silver nanoparticles.  相似文献   

16.
An end-to-end assembly of spherical Ag nanoparticles takes place in the presence of biotin to form long fiberlike microstructures. These microstructures are about 4 mum long with a thickness of 1 mum, obtained from SEM studies. TEM studies showed the presence of spherical silver nanoparticles having an average size of 20 nm. ATR-FTIR studies revealed that silver ions interact with biotin involving the carboxylate group. A weak binding of the silver particles with the thioether and ureido groups helps in connecting the Ag nanoparticles to form long fiberlike structures. Elucidation of the mechanism of formation of the spherical Ag clusters was done by pulse radiolysis.  相似文献   

17.
Detailed studies of a new approach to the synthesis and encapsulation of silver and silver halide nanoparticles inside shell-cross-linked cylindrical block copolymer polyisoprene-block-polyferrocenyldimethylsilane (PI-b-PFS) micelles (1) through in situ redox reactions are reported. The cylindrical nanostructures 1 were prepared by the solution self-assembly of the PI-b-PFS diblock copolymer in the PI-selective solvent hexane followed by Pt(0)-catalyzed PI shell-cross-linking hydrosilylation reactions. The partial preoxidation of the swollen PFS core using tris(4-bromophenyl)aminium hexachloroantimonate [p-BrC6H4)3N][SbCl6] (2, Magic Blue) followed by redox reaction between the remaining Fe(II) centers in the PFS core and Ag(+) cations led to the formation of silver nanoparticles. High-resolution scanning transmission electron microscopy images of the resulting peapod structures provided a clear indication that the nanoparticles were encapsulated inside the micelles. The composition of the nanoparticles was analyzed by energy-dispersive X-ray spectroscopy (EDX). By combining the evolution of the UV-vis spectra of the reaction mixture and EDX measurements, we surprisingly found that silver halide seed particles were formed through a precipitation reaction at an early stage of the encapsulation process. The size of the silver nanoparticles varied with different amounts of silver ions added to the micelle solution. When I2 was used as the preoxidant, AgI nanoparticles were formed and encapsulated inside the cylinders through the precipitation reaction between iodide anions and silver ions. The packing density of the resulting AgI nanoparticles was increased by an iterative addition method, which utilizes the reversible redox properties of PFS. The small encapsulated AgI nanoparticles were also shown to serve as seeds for the formation of larger Ag nanoparticles when a silver salt was subsequently added.  相似文献   

18.
Surface-enhanced Raman spectroscopy (SERS) can attain the “fingerprint” information of molecules from their vibrational transitions for detecting chemical species and thus displays extraordinary application value in studying chemical reaction mechanism catalyzed by noble metal nanoparticles in recent years. Herein, we successfully fabricated bifunctional Ag-Pd triangular nanoplates with integration of catalytic and SERS activities, using Ag triangular nanoplates as templates and Na2PdCl4 as Pd precursor in the presence of ascorbic acid acting as reducing agent and polyvinylpyrrolidone serving as stabilizing agent. We found slowly titrating Na2PdCl4 solution, compared with the one-shot injection during reaction, can strongly restrain the galvanic replacement reaction and maintain the Ag content, therefore retaining the plasmonic and SERS properties of Ag-Pd triangular nanoplates. By easily adjusting the amount of Na2PdCl4, we can optimize the SERS and catalytic activities of Ag-Pd triangular nanoplates. The optimal Ag-Pd triangular nanoplates with dual functionalities are used to follow the catalytic reduction process of 4-nitrothiophenol in the presence of NaBH4 by SERS. The results reveal 4-nitrothiophenol is directly transformed to 4-aminothiophenol through a one-step route. Thereby, the prepared Ag-Pd triangular nanoplates are effective and suitable for sensitively investigating the catalytic reaction process by in situ SERS.  相似文献   

19.
By a simple and facile wet-chemistry technique without any surfactant, various shapes of Ag(2)S crystals--including leaflike pentagonal nanoplates, crinkly nanoscrolls, hexagonal prismlike microtubes, and microrods--were fabricated in situ on a large-area silver-foil surface separately. Detailed experiments revealed that the Ag(2)S nanoplates were formed just by immersing the silver foil in a sulfur/ethanol solution at room temperature and atmospheric pressure, and they subsequently rolled into nanoscrolls and further grew into microtubes and microrods under solvothermal conditions. Inspired by the natural curling of a piece of foliage, we proposed a surfactant-free rolling mechanism to interpret the observed morphological evolution from lamellar to tubular structures. Based on these simple, practical, and green chemical synthetic routes, we can easily synthesize lamellar, scrolled, tubular, and clubbed Ag(2)S crystals by simply adjusting the reaction temperature, pressure, and time. It is very interesting to note that the current rolling process is quite different from the previous reported rolling mechanism that highly depends on the surfactants; we revealed that the lamellar Ag(2)S could be rolled into tubular structures without using any surfactant or other chemical additives, just like the natural rolling process of a piece of foliage. Therefore, this morphology-controlled synthetic route of Ag(2)S crystals may provide new insight into the synthesis of metal sulfide semiconducting micro-/nanocrystals with desired morphologies for further industrial applications. The optical properties of the pentagonal Ag(2)S nanoplates/film were also investigated by UV/Vis and photoluminescence (PL) techniques, which showed large blue-shift of the corresponding UV/Vis and PL spectra.  相似文献   

20.
Superhydrophobic pure silver film composed of flower-like microstructures built by interconnected silver nanoplates on a copper plate without any modification was prepared by a facile galvanic exchange reaction between the aqueous [Ag(NH3)2]OH and the copper plate, giving rise to a contact angle as high as 157 degrees .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号