首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
废油脂催化转化制取生物柴油的研究   总被引:9,自引:0,他引:9  
陈慧  梁宝臣  王祖鹓 《分子催化》2006,20(3):276-277
随着世界经济的发展,石化燃料已经不能满足世界经济发展的需要.以天然油脂为原料生产的生物柴油,作为一种可再生的清洁能源,目前已经受到世界各国的普遍关注.但是目前生产生物柴油使用最广泛的原料是纯菜籽油,生产成本较高,不具有与石化柴油竞争的能力.因此,本实验提出了利用餐  相似文献   

2.
作为一种对环境友好的可再生燃料生物柴油,对解决日益枯竭的石油资源和由石化柴油燃烧带来的环境问题具有重要意义.综述了运用酯交换反应制备生物柴油的几种方法的研究进展,对其优、缺点和研究趋势进行了归纳总结和展望.  相似文献   

3.
第二代生物柴油技术研究进展   总被引:1,自引:0,他引:1  
第二代生物柴油是指在高温高压下,利用催化加氢脱氧反应等技术将动植物油脂转化为具有石化燃料品质的碳氢燃料,是能源领域最热门和最有前途的技术之一.本文作者对动植物油原料来源,加氢脱氧反应机理,主要的加氢生产工艺以及加氢催化剂的研究进展进行了综述,并且分析了发展第二代生物柴油的难点和发展趋势.  相似文献   

4.
正生物柴油是由可再生的动植物油脂甲醇(或者乙醇)在催化剂的作用下,经酯交换反应而得到的长链脂肪酸酯,是一种可以替代普通石化柴油的可再生清洁燃料~([1-3])。随着世界范围内车辆的快速增加,柴油的需求量愈来愈大。而石油资源的日益枯竭和人们环保意识的提高,大大促进了世界各国加快柴油替代燃料的开发步伐,生物柴油以其优越的环保性能和可再生性受到各国的重视~([4-6])。醇是生产生物柴油的原料之一,只有在适当的  相似文献   

5.
生物柴油-柴油混合燃料的理化及排放特性研究   总被引:1,自引:0,他引:1  
对生物柴油-柴油混合燃料的表面张力、运动黏度、抗磨性、氧化稳定性以及碳烟排放等特性进行了测试和研究.结果表明,生物柴油-柴油混合燃料的表面张力随生物柴油含量的增加呈抛物线趋势变化,并随温度升高呈幂函数曲线下降.生物柴油的磨斑直径小于柴油,最大卡咬极限压力大于柴油.生物柴油的质量分数为40%-70%,混合燃料的氧化稳定性...  相似文献   

6.
气相色谱法测定生物柴油中脂肪酸甲酯含量   总被引:10,自引:0,他引:10  
生物柴油是利用动植物油脂等可再生资源通过酯交换技术制造的可以替代石化柴油的新型清洁安全燃料[1-3]它的主要成分是脂肪酸甲酯。由于不同油脂原料所生产的生物柴油的脂肪酸甲脂组成不同因而测定时所需的气相色谱条件与方法也不尽相同[4-6]。本文采用HP-innowax毛细管色谱柱,  相似文献   

7.
田钊炜  达伟民  王雷  杨宇森  卫敏 《化学学报》2022,80(9):1322-1337
生物柴油是一种重要的可再生清洁能源, 特别是经催化加氢脱氧等系列过程制备的第二代生物柴油, 在成分上与石油基燃料相似, 有望成为一种替代传统化石燃料的绿色能源. 在合成第二代生物柴油的研究中, 设计与制备兼具高活性与高稳定性的加氢脱氧多相催化剂是关键问题. 近年来, 研究者对于催化剂的种类与应用进行了探索, 并取得了一定的进展. 详细分析了加氢脱氧制备第二代生物柴油反应原料及反应参数、反应器对生产路径和产能的影响, 并对反应机理进行了介绍; 进一步从双金属位点、金属-酸性位点及金属-空位协同作用三个方面对催化剂结构设计进行了讨论和分析; 最后, 对第二代生物柴油领域的未来发展趋势进行了展望.  相似文献   

8.
生物质能源的开发与利用   总被引:8,自引:0,他引:8  
陈曦  韩志群  孔繁华  胡徐腾 《化学进展》2007,19(7):1091-1097
本文概述了生物质能源的特征以及发展生物质能源的意义,综述了国内外生物质能源开发与利用的现状,简介了中国石油天然气股份有限公司生物质能源的发展思路、部署及工作进展.中国石油天然气股份有限公司生物质能源发展策略重点放在发展生物柴油和燃料乙醇.本文结合公司生物质能源长期发展战略以及实际工作开展情况分别从生物柴油、燃料乙醇两个方面详细探讨了所面临的生物质能源化工关键技术的需求,并提出相关发展建议.  相似文献   

9.
本文概述了生物质能源的特征以及发展生物质能源的意义,综述了国内外生物质能源开发与利用的现状,简介了中国石油天然气股份有限公司生物质能源的发展思路、部署及工作进展.中国石油天然气股份有限公司生物质能源发展策略重点放在发展生物柴油和燃料乙醇.本文结合公司生物质能源长期发展战略以及实际工作开展情况分别从生物柴油、燃料乙醇两个方面详细探讨了所面临的生物质能源化工关键技术的需求,并提出相关发展建议.  相似文献   

10.
生物质能源的开发与利用   总被引:3,自引:0,他引:3  
本文概述了生物质能源的特征以及发展生物质能源的意义,综述了国内外生物质能源开发与利用的现状,简介了中国石油天然气股份有限公司生物质能源的发展思路、部署及工作进展。中国石油天然气股份有限公司生物质能源发展策略重点放在发展生物柴油和燃料乙醇。本文结合公司生物质能源长期发展战略以及实际工作开展情况分别从生物柴油、燃料乙醇两个方面详细探讨了所面临的生物质能源化工关键技术的需求,并提出相关发展建议。  相似文献   

11.
The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats) has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF) technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs) for biodiesel synthesis.  相似文献   

12.
Emission profile of rapeseed methyl ester and its blend in a diesel engine   总被引:1,自引:0,他引:1  
Fatty acid methyl esters, also known as biodiesel, have been shown to have a great deal of potential as petro-diesel substitutes. Biodiesel comprise a renewable alternative energy source, the development of which would clearly reduce global dependence on petroleum and would also help to reduce air pollution. This paper analyzes the fuel properties of rapeseed biodiesel and its blend with petro-diesel, as well as the emission profiles of a diesel engine on these fuels. Fuels performance studies were conducted in order to acquire comparative data regarding specific fuel consumption and exhaust emissions, including levels of carbon monoxide (CO), carbon dioxide (CO2), smoke density, and NOx, in an effort to assess the performance of these biodiesel and blend. The fuel consumption amount of oil operations at high loads was similar or greater than that observed during petro-diesel operation. The use of biodiesel is associated with lower smoke density than would be seen with petro-diesel. However, biodiesel and its blend increased the emission of CO, CO2, and nitrogen oxides, to a greater degree than was seen with petro-diesel. The above results indicate that rapeseed biodiesel can be partially substituted for petro-diesel under most operating conditions, regarding both performance parameters and exhaust, without any modifications having to be made to the engine.  相似文献   

13.
With the depletion of fossil resources, there is a need to find alternative resources of fuels and chemicals. The use of renewable feedstock such as those from seed oil processing is one of the best available resources that have come to the fore-front recently. This paper critically analyzes and highlights major factors in the biodiesel industry, such as seeds oil composition, production methods, properties of biodiesel, problems and potential solutions of using vegetable seed oil, the composition, quality and effective utilization of crude glycerol, the catalytic conversion of glycerol into possible fuels and chemicals.  相似文献   

14.
Biofuels, such as bio‐ethanol, bio‐butanol, and biodiesel, are of increasing interest as alternatives to petroleum‐based transportation fuels because they offer the long‐term promise of fuel‐source regenerability and reduced climatic impact. Current discussions emphasize the processes to make such alternative fuels and fuel additives, the compatibility of these substances with current fuel‐delivery infrastructure and engine performance, and the competition between biofuel and food production. However, the combustion chemistry of the compounds that constitute typical biofuels, including alcohols, ethers, and esters, has not received similar public attention. Herein we highlight some characteristic aspects of the chemical pathways in the combustion of prototypical representatives of potential biofuels. The discussion focuses on the decomposition and oxidation mechanisms and the formation of undesired, harmful, or toxic emissions, with an emphasis on transportation fuels. New insights into the vastly diverse and complex chemical reaction networks of biofuel combustion are enabled by recent experimental investigations and complementary combustion modeling. Understanding key elements of this chemistry is an important step towards the intelligent selection of next‐generation alternative fuels.  相似文献   

15.
The environmental degradation, combined with the continuous depletion of the world's fossil fuel reserves, has forced the search for alternative fuels. This study was performed to investigate the performance of novel biodiesels in the CI engine. The experiments were performed at three different compressions ratios (16:1, 17:1, 18:1) and four loading conditions (25%, 50%, 75%, 100%). Different types of fuels such as jatropha biodiesel (JB), roselle biodiesel (RB), and ternary biodiesel (TB) were prepared and analyzed. The thermal performance of different fuels was analyzed in terms of brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), and exhaust gas temperature (EGT). The emission characteristics such as CO2 emission, NOx emission, and smoke emission were analyzed for all types of fuels. The results of these fuels in the engine were compared with mineral diesel (MD). The BTE was increased with increasing compression ratios and loads for all types of fuels. The BSFC was increased with increasing compression ratios but decreased with increasing loads. The increase in emission of NOx was observed at higher compression ratios and loads. However, the CO2 emission was decreased at higher loads and lower compression ratio. The performance curves achieved with a 20% jatropha biodiesel blend showed results that were approximate to those obtained with pure MD. The comparative analysis between different fuels showed that JB exhibit higher thermal performance as compared to other biodiesels. Therefore, JB can be a better alternative to conventional fuel.  相似文献   

16.
Biodiesel serves as a promising alternative to the conventional petroleum fuels and is considered to be a renewable source of energy which can be used in compression-ignition engines with minimum or no modifications. Two biodiesels derived from Jatropha curcas seeds and marine microalga Chlorella variabilis were substituted for petrodiesel and 16 priority polycyclic aromatic hydrocarbons (United States Environmental Protection Agency) were targeted for quantification through gas chromatography equipped with a flame ionization detector. For comparison, petrodiesel was selected as a control, and the analyte concentrations were calculated through calibration curves with correlation coefficient ranging from 0.9909 to 0.9999. The analytical figures of merit were determined for each analyte. The relative standard deviations for intra-day repeatability and inter-day reproducibility were in the range of 4.47–8.75%. The results indicated a significant decrease of around 77 and 68% in the overall polycyclic aromatic hydrocarbon concentrations in the particulate matter originating from J. curcas and microalga C. variabilis biodiesel, respectively. This study is perceived as an important step toward describing the green emission behavior of these biodiesels and their merits compared to the conventional petroleum-based fuels.  相似文献   

17.
Journal of Solid State Electrochemistry - Our energy sources such as fossil fuels and coal are limited and cause air pollution. Hydrogen has been promoted as an alternative source of energy, which...  相似文献   

18.
Journal of Thermal Analysis and Calorimetry - As the demand for fossil fuels has increased tremendously, cooking oil is found to be an effective source of biodiesel, but storage problems and NOX...  相似文献   

19.
Akano  T.  Miura  Y.  Fukatsu  K.  Miyasaka  H.  Ikuta  Y.  Matsumoto  H.  Hamasaki  A.  Shioji  N.  Mizoguchi  T.  Yagi  K.  Maeda  I. 《Applied biochemistry and biotechnology》1996,57(1):677-688
Applied Biochemistry and Biotechnology - Hydrogen is a clean energy alternative to the fossil fuels, the main source of greenhouse gas emissions. We developed a stable system for the conversion of...  相似文献   

20.
The advent of policies that incentivize or require alternative diesel fuels has increased the demand for the development of fast analytical methods aiming for the quality control of these fuels. This study approached an alternative method for the determination of biodiesel acidity employing capillary zone electrophoresis based on free fatty acids screening and quantification. Sample preparation comprised vortex-assisted liquid-liquid extraction of free fatty acids and was a crucial step for analysis. It was studied through a 32 full factorial design considering sample mass and the stirring time. Then, solvent suitability was evaluated univariately. The free fatty acid screening was carried out employing a capillary zone electrophoresis method able to separate C16:0, C18:0, C18:1 n-9, C18:2 n-6, and C18:3 n-3, major fatty acids in a variety of vegetable oils used for biodiesel synthesis. In addition to the straightforward sample preparation protocol, the running time of the developed method was only 12 min. Moreover, ultraviolet absorption indirect detection of analytes was approached to avoid analytes derivatization, considering the lack of chromophore groups in saturated fatty acids. Statistical tests did not evidence any significant differences in the biodiesel acidity determination expressed in percentage of free fatty acids when comparing the proposed capillary zone electrophoresis method and the traditional potentiometric titration approach within the 95% confidence interval, which demonstrates the suitability of this alternative method for the biodiesel quality control in routine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号