首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.
Biorefinery based on biomass resources is an important approach for the oil refining and petrochemical industry to achieve sustainable development. Two types of biorefinery suitable for China’s biomass resources are presented in this paper. With sorgo and cassava as raw material, an ethanol-biorefinery for the production of ethanol-gasoline and chemicals is explored, and with rape seed and cotton seed oil as raw material, a biodiesel-biorefinery for the production of biodiesel and chemicals is also explored. The associated problems and measures taken are discussed in the end.  相似文献   

2.
An important fuel criterion for biodiesel is bound glycerol, which is a function of the residual amount of triglycerides and partial glycerides in the biodiesel. Either high-temperature gas chromatography or high performance liquid chromatography can be used for determining these minor but important components in biodiesel. In this paper we have conducted a statistical study on the accuracy of the two methods for ascertaining the bound glycerol in biodiesel fuels obtained from different feedstocks. Analysis of variance showed that with one exception, namely diacylglycerols in some soy oil based biodiesel, there was no statistical difference in bound glycerol for the biodiesel samples analyzed or a difference between methods. Operationally, the high performance liquid chromatographic method is superior to the high temperature gas chromatographic method in that it requires no sample derivatization, has shorter analysis times, and is directly applicable to most biodiesel fuels.  相似文献   

3.
随着化石燃料的短缺及其利用所产生的环境问题,可再生生物质资源逐渐成为生产燃料以及化学品的重要来源。近年来,甘油作为生物柴油生产的主要副产物受到了人们的广泛关注,利用其生产高附加值产品以及开发相关的转化技术也成为了国内外学者研究的热点。在诸多转化技术中,甘油选择性氧化制丙烯酸展现出了广阔的发展前景,对该反应尤其是催化剂开展研究具有重要的经济意义和社会意义。文中综述了用于甘油选择性氧化制丙烯酸复合金属氧化物催化剂的研究现状,介绍了当前用于该反应的催化体系类型以及对甘油氧化制丙烯酸催化反应机理的认识,分析并提出了存在的问题以及对未来的展望。  相似文献   

4.
日益严重的全球性能源和环境问题促使开发利用可再生的生物质资源成为当前研究的一个热点。本文概述了生物质基多元醇合成燃料和化学品来实现生物质转化利用的一些最新进展,特别是集中介绍了甘油和山梨醇等多元醇催化水相重整合成氢气和液体烃等燃料、催化选择氢解和氧化合成高附加值化学品或化学中间体等方面的进展,分析了存在的问题和可能的解决措施以及今后的发展趋势,指出生物质基多元醇将成为今后合成可再生燃料和化学品的新型平台分子。  相似文献   

5.
生物质利用新途径:多元醇催化合成可再生燃料和化学品   总被引:1,自引:0,他引:1  
沈宜泓  王帅  罗琛  刘海超 《化学进展》2007,19(2):431-436
日益严重的全球性能源和环境问题促使开发利用可再生的生物质资源成为当前研究的一个热点.本文概述了生物质基多元醇合成燃料和化学品来实现生物质转化利用的一些最新进展,特别是集中介绍了甘油和山梨醇等多元醇催化水相重整合成氢气和液体烃等燃料、催化选择氢解和氧化合成高附加值化学品或化学中间体等方面的进展,分析了存在的问题和可能的解决措施以及今后的发展趋势,指出生物质基多元醇将成为今后合成可再生燃料和化学品的新型平台分子.  相似文献   

6.
This paper describes several examples of knowledge-intensive technologies for the production of chemicals from biomass, which take advantage of the biomass structure in a more efficient way than the production of fuels or electricity alone. The depletion in fossil feedstocks, increasing oil prices, and the ecological problems associated with CO(2) emissions are forcing the development of alternative resources for energy, transport fuels, and chemicals, such as the replacement of fossil resources with CO(2) neutral biomass. Allied with this is the conversion of crude oil products utilizes primary products (ethylene, etc.) and their conversion into either materials or (functional) chemicals with the aid of co-reagents such as ammonia, by various process steps to introduce functionalities such as -NH(2) into the simple structures of the primary products. Conversely, many products found in biomass often contain functionalities. Therefore, it is attractive to exploit this in order to by-pass the use, and preparation of, co-reagents as well as to eliminate various process steps by utilizing suitable biomass-based precursors for the production of chemicals.  相似文献   

7.
This article critically reviews the electroanalytical methods devoted for the determination of organic compounds in automotive fuels that can range from contaminants to additives typically introduced into liquid biofuels and liquid fossil fuels. Contaminants such as aldehydes and ketones in bioethanol, free fatty acids and glycerol in biodiesel, and sulfur and nitrogen organic compounds in gasoline and diesel fuel, and additives such as colour markers and antioxidants added to fuels were determined by electroanalytical methods. Special focus is given to electrodes, electrochemical techniques, and sample preparation strategies. Future directions of research on electroanalysis of liquid fuels are presented.  相似文献   

8.
《Comptes Rendus Chimie》2015,18(12):1328-1334
In this study, a method consisting in coupling transesterifications for no-glycerol biodiesel production catalyzed by CaO was put forward. The transesterification between rapeseed oil and methanol was greatly improved by integrating glycerol and dimethyl carbonate (DMC) transesterification. From this result, it was found that the high fatty acid methyl ester (FAME) yield of 92.6% (with ultra-traces of glycerol as a by-product) was obtained at 65 °C under normal pressure, which is as high as the previously reported supercritical DMC method for no-glycerol biodiesel production at a reaction temperature of 350 °C and under pressures up to 17.8 MPa. Moreover, this new method has high water tolerance, and a yield of over 82% of FAME is still achieved in the presence of 0.2% of water. The optimized reaction conditions, such as the molar ratio of DMC to methanol, the catalyst dosage and the reaction time, were investigated to produce high-quality biodiesel. The fuel properties determined and discussed in light of EN 14214 (European standards) demonstrate that the biodiesel produced using this new method has good flow properties with a cloud filter plugging point of –10 °C and a pour point of –9.4 °C. Furthermore, the amount of free glycerol was found to be as low as 0.018% in the biodiesel obtained directly from this new method without any further processing. The results of this study indicate the feasibility of producing quality biodiesel fuels without glycerol by coupling transesterifications.  相似文献   

9.
New opportunities for the conversion of glycerol into value-added chemicals have emerged in recent years as a result of glycerol's unique structure, properties, bioavailability, and renewability. Glycerol is currently produced in large amounts during the transesterification of fatty acids into biodiesel and as such represents a useful by-product. This paper provides a comprehensive review and critical analysis on the different reaction pathways for catalytic conversion of glycerol into commodity chemicals, including selective oxidation, selective hydrogenolysis, selective dehydration, pyrolysis and gasification, steam reforming, thermal reduction into syngas, selective transesterification, selective etherification, oligomerization and polymerization, and conversion of glycerol into glycerol carbonate.  相似文献   

10.
生物柴油的发展概况与应用前景   总被引:3,自引:0,他引:3  
石化燃料是当前人类使用的主要能源,但其使用造成了严重的温室效应和环境污染.生物柴油具有安全、无污染、燃烧好、可再生等优点而被当作石化燃料的绿色替代品.本文阐述了生物柴油的本质及其相对于石化柴油在使用上的优良特性,综述了国内外生物柴油技术的研究、应用及产业发展概况,论述了生物柴油研究的重要意义.根据菜油的特点及油菜在我国的发展前景,认为油菜可能是我国发展生物柴油的理想原料.  相似文献   

11.
韩江华 《色谱》2019,37(4):438-443
该文介绍了一种生物柴油副产物粗甘油和拔出轻组分中有机氯化物的气相色谱-质谱(GC-MS)定性检测方法。样品来自于亚临界条件下地沟油与甲醇的酯交换反应,总氯含量较高。在GC-MS分析之前采用正己烷萃取脱除样品中的脂肪酸甲酯和游离脂肪酸等脂溶性干扰组分,对参考标准样品3-氯代甘油和2-氯代甘油以及样品的脱脂水相部分进行苯硼酸衍生化、正己烷萃取、浓缩等处理,经正己烷复溶后进行GC-MS分析。结果表明,生物柴油副产物中的有机氯化物主要为3-氯代甘油和2-氯代甘油。参考已有文献的研究结果和生物柴油制备工艺对有机氯化物的来源进行了讨论,推断原料地沟油中存在的大量无机氯盐是导致产生3-氯代甘油和2-氯代甘油的主要原因。  相似文献   

12.
The crude Tung oil with 4.72?mg KOH/g of acid value (AV) was converted by direct transesterification, and the reaction mixture was quantified. The phase distribution data showed that 38.24% of excess methanol, 11.76% of KOH, 10.13% of soap and 4.36% of glycerol were in the biodiesel phase; 0.35% of biodiesel dissolved in the glycerol phase. Tung oil biodiesel as well as its blends with 0(#) diesel was investigated under different storage conditions. The results indicated that higher temperature greatly influenced the storage stability, especially when the volume fraction of Tung oil biodiesel is increased in the blends.  相似文献   

13.
随着生物柴油产业的快速发展,作为副产物的甘油大量过剩,因而有效利用甘油既能促进生物柴油产业的良性发展,又能节约大量石油资源。通过甘油催化氢解的方式来制备高附加值化学品丙二醇、乙二醇和丙醇等是甘油转化研究中最有潜在应用价值的路径之一,甘油氢解反应易于实现连续化生产,且目标产物附加值高、选择性高,因而具有良好的经济效益。本文首先简要介绍了甘油化学,深入探讨了甘油的氢解机理,然后重点综述了甘油氢解制备1, 2-丙二醇、1, 3-丙二醇、乙二醇和丙醇高效催化剂的研究进展,并对甘油氢解未来的研究方向和发展趋势作了进一步展望。  相似文献   

14.
The acknowledgement that uncontrolled and excessive use of fossil resources has become a prime concern with regard to environmental deterioration, has shifted the orientation of economies towards the implementation of sustainable routes of production, through the valorization of biomass. Green chemistry plays a key role in this regard, defining the framework of processes that encompass eco-friendly methodologies, which aim at the development of highly efficient production of numerous bioderived chemicals, with minimum environmental aggravation. One of the major concerns of the chemical industry in establishing sustainable routes of production, is the replacement of fossil-derived, volatile solvents, with bio-based benign ones, with low vapor pressure, recyclability, low or no toxicity, availability and low cost. Glycerol is a natural substance, inexpensive and non-toxic, and it is a principal by-product of biodiesel industry resulting from the transesterification process. The ever-growing market of biodiesel has created a significant surplus of glycerol production, resulting in a concomitant drop of its price. Thus, glycerol has become a highly available, low-cost liquid, and over the past decade its use as an alternative solvent has been gaining unprecedented attention. This review summarizes the utilization of glycerol and glycerol-based deep eutectic mixtures as emerging solvents with outstanding prospect in bioactive polyphenol extraction.  相似文献   

15.
Summary The methanol and free glycerol content of vegetable oil methyl esters used as diesel fuel (biodiesel) is very important in describing the quality of this fuel and is therefore limited by specifications. A previously described GLC method for the determination of free glycerol in biodiesel has been further developed and also allows the simultaneous determination of methanol. Sample preparation includes dissolving in dimethylformamide, silylation with bis-trimethylsilyltrifluoracetamide (BSTFA) and separation on a methylsilicone fluid, coated-capillary column using either FID or MS-detection. Ethanol and 1,4-butanediol were used as internal standards. Both detection systems show sufficient sensitivity for concentrations relevant to biodiesel samples. The recovery was tested using a RME-sample containing known amounts of methanol and glycerol.  相似文献   

16.
The environmental impact of CO2 emissions via the use of fossil resources as chemical feedstock and fuels has stimulated research to utilize renewable biomass feedstock. The biogenic compounds such as polyols are highly oxygenated and their valorization requires the new methods to control the oxygen to carbon ratio of the chemicals. The catalytic cleavage of C?O bonds and C?C bonds is promising methods, but the conventional catalyst systems encounter the difficulty to obtain the high yields of the desired products. This review describes our recent development of the high performance heterogeneous catalysts for the valorization of the biogenic chemicals such as glycerol, furfural, and levulinic acid via selective cleavage of C?O bonds and C?C bonds in the liquid‐phase. Selective C?O bond cleavage by hydrogenolysis enables production of various diols useful as engineering plastics, antifreeze, and cosmetics in high yields. The success of the selective C?C bond scission of levulinic acid can be applied to a wide range of the biogenic oxygenates such as carboxylic acids, esters, lactones, and primary alcohols, in which the selective C?C bond scission at adjacent to the oxygen functional groups are achieved. Furthermore, valorization of glycerol by selective acetylation and acetalization, and of levulinic acid by hydrogenation is described. Our catalysts show excellent performance compared to the reported catalysts in the aforementioned valorization.  相似文献   

17.
Production of alternative fuels, such as biodiesel, from transesterification of vegetable oil driven by heterogeneous catalysts is a promising alternative to fossil diesel. However, achieving a successful substitution for a new renewable fuel depends on several quality parameters. 1H NMR spectroscopy was used to determine the amount of methyl esters, free glycerin and acid number in the transesterification of soybean oil with methanol in the presence of hydrotalcite‐type catalyst to produce biodiesel. Reaction parameters, such as temperature and time, were used to evaluate soybean oil methyl esters rate conversion. Temperatures of 100 to 180 °C and times of 20 to 240 min were tested on a 1 : 12 molar ratio soybean oil/methanol reaction. At 180 °C/240 min conditions, a rate of 94.5 wt% of methyl esters was obtained, where free glycerin and free fatty acids were not detected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Hou  Limin  Yu  Qingbo  Wang  Kun  Wang  Tuo  Yang  Fan  Zhang  Shuo 《Journal of Thermal Analysis and Calorimetry》2019,136(1):317-330

Depletion of non-renewable energy sources are at elevated manner due to the rapid growth of industrialization and transportation sector in last few decades and leads to further energy demand. Biodiesels especially second-generation fuels from non-edible oil resources are alternate sources for replacement of diesel fuel in CI engines due to their considerable environmental benefits. In the present work, non-edible feedstock of Calophyllum inophyllum seed oil (tamanu oil) is used for biodiesel production. Transesterification method is used for preparation of biodiesel in the existence of methanol with NaOH as catalyst. The copper nanoparticles are synthesized by electrochemical method, and it is characterized by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). XRD and SEM results confirm the presence of copper nanoparticle and size of around 30 nm. This paper aims to investigate the effects of the copper additive nanoparticles with biodiesel blends on the engine performance, combustion and emission characteristics of single-cylinder direct-injection diesel engine and compared that with diesel fuel. The results showed that the addition of nano-additives enhances brake thermal efficiency and reduces specific fuel consumption compared to biodiesel blends but slightly lower than diesel. Combustion characteristics also are enhanced by improved oxidation reaction inside the combustion chamber which resulted in higher heat release rate. The emissions of HC, NOx and O2 are significantly reduced for nano-additive blends compared to diesel but increased CO2 emission was observed. It is noticed that higher CO2 emission and substantial reduction of unused O2 emissions from engine fueled with nano-additive are evident for enhanced oxidation and better combustion. Energy and exergy analysis of the diesel engine is carried out to estimate the effect of using nanoparticle additive with biodiesel.

  相似文献   

19.
Biodiesel being one of the most promising renewable biofuels has seen rapid increase in production capacity due to high demand for diesel replacement; along with oversupply of its by-product, crude glycerol. Developing new industrial usage for glycerol is essential to defray the cost and sustainability of biodiesel industry and to promote the biodiesel industrialization. One of the approaches is by the transformation of glycerol into a liquid, referred as bio-oil through pyrolysis technology. Bio-oils produced by pyrolysis processes can be upgraded to produce transportation fuels or for power generation. However, current state of pyrolysis technologies are still major hurdles their development with respect to its commercial applications. Recently, microwave technology has attracted considerable attention as effective method for significantly reducing reaction time, improving the yields and selectivity of target products. Hence, this review strives extensively towards addressing the application of microwave-assisted technology applied to the pyrolysis process as a way of cost-effective and operationally feasible processes to directly utilize crude glycerol. The present review will focus on the pyrolyzed liquid product (bio-oil) derived by employing the microwave-assisted pyrolysis method. This review concludes that microwave-assisted glycerol conversion technology is a promising option as an alternative method to conventional glycerol conversion technology.  相似文献   

20.
The microbial production of 1,3-propanediol (1,3-PD) from raw glycerol, a byproduct of biodiesel production, is economically and environmentally advantageous. Although direct use of raw glycerol without any pretreatment is desirable, previous studies have reported that this could cause inhibition of microbial growth. In this study, we investigated the effects of raw glycerol type, different microorganisms, and pretreatment of raw glycerol on the production of 1,3-PD. Raw glycerol from waste vegetable-oil-based biodiesel production generally caused more inhibition of 1,3-PD production and microbial growth compared to raw glycerol from soybean-oil-based biodiesel production. In addition, two raw glycerol types produced from two biodiesel manufacturers using waste vegetable oil exhibited different 1,3-PD production behavior, partially due to different amounts of methanol included in the raw glycerol from the two biodiesel manufacturers. Klebsiella strains were generally resistant to all types of raw glycerol while the growth of Clostridium strains was variably inhibited depending on the type of raw glycerol. The 1,3-PD production of the Clostridium strains using acid-pretreated raw glycerol was significantly enhanced compared to that with raw glycerol, demonstrating the feasibility of using raw glycerol for 1,3-PD production by various microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号