首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The title ligand, 1,4,8,11-tetraazacyclotetradecane-1,4-diyl-bis(methylphosphonic acid) (H4te2p1,4, H4L), was prepared by an optimized synthetic approach and its complexing properties towards selected metal ions were studied by means of potentiometry. The ligand forms a very stable complex with copper(II) (log beta(CuL) = 27.21), with a high selectivity over binding of other metal ions (e.g. log beta(ZnL) = 20.16, log beta(NiL) = 21.92). The crystal structures of two intermediates in the ligand synthesis and two forms of the nickel(II) complex (obtained by crystallization at different pH) were determined. From acid solution, the crystals of trans-O,O-[Ni(H3L)]Cl.H2O were isolated. In such complex species, one phosphonate pendant arm is double- and the second arm is monoprotonated. The isolation of such species demonstrates a high kinetic inertness of the complex. The central metal ion is surrounded by four in-plane nitrogen atoms (in the ring configuration III) and two oxygen atoms of pendant moieties in the apical positions of octahedral coordination sphere. From neutral solution, the crystals of (trans-O,O-[Ni(H2L)])3.5H2O were isolated. The molecular structures of the complex units found in this structure are analogous to that found in trans-O,O-[Ni(H3L)]Cl.H2O.  相似文献   

2.
Divalent metal complexes of macrocyclic ligand 1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid)) (1,8-H4te2p, H4L) were investigated in solution and in the solid state. The majority of transition-metal ions form thermodynamically very stable complexes as a consequence of high affinity for the nitrogen atoms of the ring. On the other hand, complexes with Mn2+, Pb2+ and alkaline earth ions interacting mainly with phosphonate oxygen atoms are much weaker than those of transition-metal ions and are formed only at higher pH. The same tendency is seen in the solid state. Zinc(II) ion in the octahedral trans-O,O-[Zn(H2L)] complex is fully encapsulated within the macrocycle (N4O2 coordination mode with protonated phosphonate oxygen atoms). The polymeric {[Pb(H2L)(H2O)2].6H2O}n complex has double-protonated secondary amino groups and the central atom is bound only to the phosphonate oxygen atoms. The phosphonate moieties bridge lead atoms creating a 3D-polymeric network. The [{(H2O)5Mn}2(micro-H2L)](H2L).21H2O complex contains two pentaaquamanganese(II) moieties bridged by a ligand molecule protonated on two nitrogen atoms. In the complex cation, oxygen atoms of the phosphonate groups on the opposite sites of the ring occupy one coordination site of each metal ion. The second ligand molecule is diprotonated and balances the positive charge of the complex cation. Complexation of zinc(II) and cadmium(II) by the ligand shows large differences in reactivity of differently protonated ligand species similarly to other cyclam-like complexes. Acid-assisted dissociations of metal(II) complexes occur predominantly through triprotonated species [M(H3L)]+ and take place at pH < 5 (Zn2+) and pH < 6 (Cd2+).  相似文献   

3.
Using an acyclic hexadentate pyridine amide ligand, containing a -OCH(2)CH(2)O- spacer between two pyridine-2-carboxamide units (1,4-bis[o-(pyrydine-2-carboxamidophenyl)]-1,4-dioxabutane (H(2)L(9)), in its deprotonated form), four new complexes, [Co(II)(L(9))] (1) and its one-electron oxidized counterpart [Co(III)(L(9))][NO(3)]·2H(2)O (2), [Ni(II)(L(9))] (3) and [Cu(II)(L(9))] (4), have been synthesized. Structural analyses revealed that the Co(II) centre in 1 and the Ni(II) centre in 3 are six-coordinate, utilizing all the available donor sites and the Cu(II) centre in 4 is effectively five-coordinated (one of the ether O atoms does not participate in coordination). The structural parameters associated with the change in the metal coordination environment have been compared with corresponding complexes of thioether-containing hexadentate ligands. The μ(eff) values at 298 K of 1-4 correspond to S = 3/2, S = 0, S = 1 and S = 1/2, respectively. Absorption spectra for all the complexes have been investigated. EPR spectral properties of the copper(II) complex 4 have been investigated, simulated and analyzed. Cyclic voltammetric experiments in CH(2)Cl(2) reveal quasireversible Co(III)-Co(II), Ni(III)-Ni(II) and Cu(II)-Cu(I) redox processes. In going from ether O to thioether S coordination, the effect of the metal coordination environment on the redox potential values of Co(III)-Co(II) (here the effect of spin-state as well), Ni(III)-Ni(II) and Cu(II)-Cu(I) processes have been systematically analyzed.  相似文献   

4.
The copper(II) binding properties of the macrobicyclic diamide 1,9,12,18,22-pentaazatricyclo[7.6.6.1(3,7)]docosa-3,5,7(22)-triene-13,19-dione (L1) have been fully investigated by spectroscopic (IR, UV-vis, EPR, MALDI-TOF MS), X-ray diffraction, potentiometric, electrochemical, and spectroelectrochemical methods. This constrained receptor possesses a hemispherical cavity created by cross-bridging the 1 and 8 positions of trans-dioxocyclam (1,4,8,11-tetraazacyclotetradecane-5,12-dione, L2) with a 2,6-pyridyl strap. Treatment of L1 with a copper salt in methanol produces a red complex of [Cu(L1H(-1))]+ formula in which the copper atom is embedded in a 13-membered ring and coordinated by both amines as well as the pyridine and one deprotonated amide nitrogen atoms. Infrared spectroscopy provides evidence for protonation of the carbonyl oxygen atom belonging to the copper-bound amide of [Cu(L1H(-1))]+ under strongly acidic conditions. The resulting conversion of the amidate into an iminol group highlights the inert character of the corresponding complexes, which do not dissociate at low pH values. In contrast, both secondary amides of L1 deprotonate in the presence of a weak base, thus affording a blue pentacoordinated [Cu(L1H(-2))] compound where the copper atom sits in the center of the 14-membered dioxocyclam fragment. In aqueous solution, both complexes undergo a pH-driven (pK(a) = 8.73(2)) molecular reorganization, which is reminiscent of a glider motion. The copper(II) cation switches rapidly and reversibly from a four-coordinate flattened tetrahedral arrangement of the donor atoms in the red species to a five-coordinate environment in the blue species, which is intermediate between a square pyramid and a trigonal bipyramid. Conversion of the red to the blue form was also demonstrated to occur upon reduction of [Cu(L1H(-1))]+ by cyclic voltammetry (E(pc) = -0.64 V/SCE in CH(3)CN).  相似文献   

5.
Zhang  Zhi Hui  Bu  Xian He  Cao  Xi Chuan  Ma  Shu Ying  Zhu  Zhi Ang  Chen  Yun Ti 《Transition Metal Chemistry》1997,22(5):479-482
Two new macrocyclic dioxotetraamine ligands, 1-(2-methylthiophene)-1,4,8,11-tetraazacyclotetradecane-5,7-dione (H2L1) and 1,11-bis(2-methylthiophene)-1,4,8,11-tetraazacyclotetradecane-5,7-dione (H2L2), have been synthesized and characterized. The resulting dioxocyclams readily coordinate to CuII. The CuII complex of H2L2 has been isolated as a single crystal and the structure determined by X-ray diffraction analysis. The copper atom is in a square-planar environment with four basal nitrogen atoms. The solution behaviour of the CuII complexes, CuL1 and CuL2, has been further studied by e.s.r., u.v.–vis. and cyclic voltammetric techniques. A remarkable redshift has been observed for the maximum absorption band in the electronic spectra of CuL1 or CuL2 compared with that of the unsubstituted copper species (CuL). Electrochemical studies suggest that the introduction of thiophene pendant(s) to the macrocycle destabilizes the CuIII ion compared with the unsubstituted dioxocyclam, and the reason for this is discussed.  相似文献   

6.
Dinuclear Cu(I) complexes with bifunctionalized homoscorpionate ligands, hydrotris(thioxotriazolyl)borato [Li(Tr(Me,o)(-)(Py)) (1) and Li(Tr(Mes,Me)) (2)], and the heteroscorpionate ligand hydro[bis(thioxotriazolyl)-3-(2-pyridyl)pyrazolyl]borato [K(Br(Mes)pz(o)(-)(Py))] (3) were synthesized and crystallographically characterized. The complexes [Cu(Tr(Mes,Me))](2) (4) and [Cu(Tr(Me,o)(-)(Py))](2) (5) exhibit a similar coordination geometry where every metal is surrounded by three thioxo groups in a trigonal arrangement. The presence of a [B-H...Cu] three-center-two-electron interaction in both compounds causes the overall coordination to become tetrahedrally distorted (S(3)H coordination for each metal). The complex [Cu(Br(Mes)pz(o)(-)(Py))](2) (6) presents a trigonal geometry in which the metals interact with two thioxo groups and a bridging pyrazolyl nitrogen atom. A weak contact with a pyridine nitrogen atom completes the coordination of the metals (S(2)N,N' coordination for each metal). [Cu(Tr(Mes,Me))](2), [Cu(Tr(Me,o)(-)(Py))](2), and [Cu(Br(Mes)pz(o)(-)(Py))](2) exhibit fluxional behavior in solution as evidenced by variable-temperature NMR spectroscopy, and for 5 and 6 two species in equilibrium [in the ratio 2/1 for 5 (CDCl(3)) and 3/2 for 6 (CD(2)Cl(2))] are distinguishable in the (1)H NMR spectra at 270 K. 2D-NOESY spectra recorded at 270 K assisted in the attribution of solution molecular geometries for each isomer of 5 and 6. The free energy of activation (DeltaG()(Tc)) was determined for both equilibria from the evaluation of the coalescence temperature. DFT calculations were performed to describe plausible molecular geometry for the minor isomer of 5 and 6 and to propose a possible mechanism of interconversion between major and minor isomers. Cyclic voltammograms were recorded in CH(2)Cl(2) (3 and 6) or CH(2)Cl(2)/CH(3)CN (1/1, v/v) (2, 4, and 5) solutions using 0.1 M TBAHFP or TBAOTf as supporting electrolytes. [Cu(Tr(Mes,Me))](2), [Cu(Tr(Me,o)(-)(Py))](2), and [Cu(Br(Mes)pz(o)(-)(Py))](2) exhibit a quasi-reversible Cu(I)/Cu(II) redox behavior with E(pa) = +719 mV and E(pc) = +538 mV for 4, E(pa) = +636 mV and E(pc) = -316 mV for 5, and E(pa) = +418 mV and E(pc) = -319 mV for 6.  相似文献   

7.
The new bis(ferrocene)-cyclam macrocycle 1,8-bis(ferrocenylmethyl)-1,4,8,11-tetraazacyclotetradecane, denoted L, has been synthesized. Two Cu(II) complexes with L have been isolated and characterized from X-ray structure determination and electrochemical studies. These two LCu(II) complexes correspond to the type I (ferrocenyl subunits in the same side of the cyclam plane) and type III (ferrocenyl subunits above and below the cyclam plane) isomers. The type I LCu(II) complex was synthesized from L and a Cu(2+) salt, while the type III isomer was obtained by oxidation in air or by comproportionation of the Cu(I) complex. The interconversion between type I and type III LCu(II) complexes is negligible in acetonitrile and slow in dimethyl sulfoxide but fast via an electrochemical reduction-reoxidation cycle. According to UV-vis and electrochemical characterizations, the type III isomer is thermodynamically more stable and the type I isomer is kinetically favored. A type III LNi(II) complex was also isolated and characterized by X-ray diffraction analysis and from electrochemical studies.  相似文献   

8.
[Na{cyclo-(P(5)tBu(4))}] (1) reacts with [CuCl(PCyp(3))(2)] (Cyp=cyclo-C(5)H(9)) and [CuCl(PPh(3))(3)] (1:1) to give the corresponding copper(I) complexes with a tetra-tert-butylcyclopentaphosphanide ligand, [Cu{cyclo- (P(5)tBu(4))}(PCyp(3))(2)] (2) and [Cu{cyclo-(P(5)tBu(4))}(PPh(3))(2)] (3). The CuCl adduct of 2, [Cu(2)(mu-Cl){cyclo-(P(5)tBu(4))}(PCyp(3))(2)] (4), was obtained from the reaction of 1 with [CuCl(PCyp(3))(2)] (1:2). Compounds 2 and 3 rearrange, even at -27 degrees C, to give [Cu(4){cyclo- (P(4)tBu(3))PtBu}(4)] (5), in which ring contraction of the [cyclo-(P(5)tBu(4))](-) anion has occurred. The reaction of 1 with [AgCl(PCyp(3))](4) or [AgCl(PPh(3))(2)] (1:1) leads to the formation of [Ag(4){cyclo-(P(4)tBu(3))PtBu}(4)] (6). Intermediates, which are most probably mononuclear, "[Ag{cyclo-(P(5)tBu(4))}(PR(3))(2)]" (R=Cyp, Ph) could be detected in the reaction mixtures, but not isolated. Finally, the reaction of 1 with [AuCl(PCyp(3))] (1:1) yielded [Au{cyclo-(P(5)tBu(4))}(PCyp(3))] (7), whereas an inseparable mixture of [Au(3){cyclo-(P(5)tBu(4))}(3)] (8) and [Au(4){cyclo-(P(4)tBu(3))PtBu}(4)] (9) was obtained from the analogous reaction with [AuCl(PPh(3))]. Complexes 3-7 were characterised by (31)P NMR spectroscopy, and X-ray crystal structures were determined for 3-9.  相似文献   

9.
铜(II)-锰(II)四核配合物的合成、晶体结构和磁性   总被引:2,自引:1,他引:1  
(中国地质大学地质实验室, 北京100083) 报道了一个草酰胺桥连的四核Cu(II)Mn(II)配合物[Mn(CuL)3][Mn(H2O)6][N(CN)2]2(ClO4)2 4H2O (L为1,4,8,11-四氮杂环十四烷-2,3-二酮) (C34H74Cl2Cu3Mn2N18O24, Mr = 1490.51)的合成、晶体结构和磁性。配合物属于单斜晶系, 空间群为C2/c, 晶胞参数如下:a = 22.295(5), b = 12.852(3), c = 20.109(4) , = 90.47(3), V = 5762(2) 3, Dc = 1.718 g/m3, Z = 4, F(000) = 3068, m = 1.701mm-1, R = 0.0915, wR = 0.1810 (based on F2)。3个中性Cu(II)大环配合物通过6个氧原子与Mn(II)配位, MnO键长范围为2.190(6)~2.208(5) 拧Mn(CuL)3]2+通过高氯酸根离子连接起来形成一个二维层。高氯酸根的氧原子与CuII键长范围为2.902~2.996 , 为弱相互作用。[Mn(H2O)6]2+, N(CN)2-和H2O位于层间, 并通过氢键连成三维网络结构。磁性研究表明CuII-MnII离子间通过草酰胺传递反铁磁相互作用, 用基于各向同性的Hamiltonian算符 = 2JMnCuMn(Cu1 + Cu2 + Cu3)进行磁性拟合得到磁耦合常数JCuMn =-17 cm-1。  相似文献   

10.
Li D  Li S  Yang D  Yu J  Huang J  Li Y  Tang W 《Inorganic chemistry》2003,42(19):6071-6080
The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.  相似文献   

11.
The reaction of [Cu(L)(H(2)O)](2+) with an excess of thiosulfate in aqueous solution produces a blue to green color change indicative of thiosulfate coordination to Cu(II) [L = tren, Bz(3)tren, Me(6)tren, and Me(3)tren; tren = tris(2-aminoethyl)amine, Bz(3)tren = tris(2-benzylaminoethyl)amine, Me(6)tren = tris(2,2-dimethylaminoethyl)amine, and Me(3)tren = tris(2-methylaminoethyl)amine]. In excess thiosulfate, only [Cu(Me(6)tren)(H(2)O)](2+) promotes the oxidation of thiosulfate to polythionates. Products suitable for single-crystal X-ray diffraction analyses were obtained for three thiosulfate complexes, namely, [Cu(tren)(S(2)O(3))].H(2)O, [Cu(Bz(3)tren)(S(2)O(3))].MeOH, and (H(3)Me(3)tren)[Cu(Me(3)tren)(S(2)O(3))](2)(ClO(4))(3). Isolation of [Cu(Me(6)tren)(S(2)O(3))] was prevented by its reactivity. In each complex, the copper(II) center is found in a trigonal bipyramidal (TBP) geometry consisting of four amine nitrogen atoms, with the bridgehead nitrogen in an axial position and an S-bound thiosulfate in the other axial site. Each structure exhibits H bonding (involving the amine ligand, thiosulfate, and solvent molecule, if present), forming either 2D sheets or 1D chains. The structure of [Cu(Me(3)tren)(MeCN)](ClO(4))(2) was also determined for comparison since no structures of mononuclear Cu(II)-Me(3)tren complexes have been reported. The thiosulfate binding constant was determined spectrophotometrically for each Cu(II)-amine complex. Three complexes yielded the highest values reported to date [K(f) = (1.82 +/- 0.09) x 10(3) M(-1) for tren, (4.30 +/- 0.21) x 10(4) M(-1) for Bz(3)tren, and (2.13 +/- 0.05) x 10(3) M(-1) for Me(3)tren], while for Me(6)tren, the binding constant was much smaller (40 +/- 10 M(-1)).  相似文献   

12.
The previously synthesised Schiff-base ligands 2-(2-Ph(2)PC(6)H(4)N[double bond, length as m-dash]CH)-R'-C(6)H(3)OH (R'= 3-OCH(3), HL(1); 5-OCH(3), HL(2); 5-Br, HL(3); 5-Cl, HL(4)) were prepared by a faster, more efficient route involving a microwave assisted co-condensation of 2-(diphenylphosphino)aniline with the appropriate substituted salicylaldehyde. HL(1-4) react directly with M(II)Cl(2)(M = Pd, Pt) or Pt(II)I(2)(cod) affording neutral square-planar complexes of general formula [M(II)Cl(eta(3)-L(1-4))](M = Pd, Pt, 1-8) and [Pt(II)I(eta(3)-L(1-4))](M = Pd, Pt, 9-12). Reaction of complexes 1-4 with the triarylphosphines PR(3)(R = Ph, p-tolyl) gave the novel ionic complexes [Pd(II)(PR(3))(eta(3)-L(1-4))]ClO(4)(13-20). Substituted platinum complexes of the type [Pt(II)(PR(3))(eta(3)-L(1-4))]ClO(4)(R = P(CH(2)CH(2)CN)(3)21-24) and [Pt(II)(P(p-tolyl)(3))(eta(3)-L(3,4))]ClO(4)( 25 and 26 ) were synthesised from the appropriate [Pt(II)Cl(eta(3)-L(1-4))] complex (5-8) and PR(3). The complexes are characterised by microanalytical and spectroscopic techniques. The crystal structures of 3, 6, 10, 15, 20 and 26 were determined and revealed the metal to be in a square-planar four-coordinate environment containing a planar tridentate ligand with an O,N,P donor set together with one further atom which is trans to the central nitrogen atom.  相似文献   

13.
A series of the copper(II) complexes with tripodal tetradentate tris(pyridyl 2-methyl)amine-based ligands possessing the hydrogen-bonding 6-aminopyridine units (tapa, three amino groups; bapa, two amino groups; mapa, one amino group) have been synthesized, and their copper(II) complexes with a small molecule such as dioxygen and azide have been studied spectroscopically and structurally. The reaction of their Cu(II) complexes with NaN(3) have given the mononuclear copper complexes with azide in an end-on mode, [Cu(tapa)(N(3))]ClO(4) (1a), [Cu(bapa)(N(3))]ClO(4) (2a), [Cu(mapa)(N(3))]ClO(4) (3a), and [Cu(tpa)(N(3))]ClO(4) (4a) (tpa, no amino group). The crystal structures have revealed that the coordination geometries around the metal centers are almost a trigonal-bipyramidal rather than a square-planar except for 1a with an intermediate between them. The UV-vis and ESR spectral data indicate that the increase of NH(2) groups of ligands causes the structural change from trigonal-bipyramidal to square-pyramidal geometry, which is regulated by a combination of steric repulsion and hydrogen bond. The steric repulsion of amino groups with the azide nitrogen gives rise to elongation of the Cu-N(py) bonds, which leads to the positive shift of the redox potentials of the complexes. The hydrogen bonds between the coordinated azide and amino nitrogens (2.84-3.05 A) contribute clearly to the fixation of azide. The Cu(I) complexes with bapa and mapa ligands have been obtained as a precipitate, although that with tapa was not isolated. The reactions of the Cu(I) complexes with dioxygen in MeOH at -75 degrees C have given the trans-micro-1,2 peroxo dinuclear Cu(II) complexes formulated as [((tapa)Cu)(2)(O(2))](2+) (1c), [((bapa)Cu)(2)(O(2))](2+) (2c), and [((mapa)Cu)(2)(O(2))](2+) (3c), whose characterizations were confirmed by UV-vis, ESR, and resonance Raman spectroscopies. UV-vis spectra of 1c, 2c, and 3c exhibited intense bands assignable to pi(O(2)(2)(-))-to-d(Cu) charge transfer (CT) transitions at lambda(max)/nm (epsilon/M(-1)cm(-1)) = 449 (4620), 474 (6860), and 500 (9680), respectively. The series of the peroxo adducts generated was ESR silent. The resonance Raman spectra exhibited the enhanced features assignable to two stretching vibrations nu((16)O-(16)O/(18)O-(18)O)/cm(-1) and nu(Cu-(16)O/Cu-(18)O)/cm(-1) at 853/807 (1c), 858/812 (2c), 847/800 (3c), and at 547/522 (2c), 544/518 (3c), respectively. The thermal stability of the peroxo-copper species has increased with increase in the number of the hydrogen-bonding interactions between the peroxide and amino groups.  相似文献   

14.
The reactions of the dinuclear copper complexes [Cu(2)(L)(OAc)] [H(3)L = N,N'-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) or [Cu(2)(L')(OAc)] (H(3)L' = N,N'-(2-hydroxypropane-1,3-diyl)bis(4,5-dimethylsalicylaldimine)] with various phosphonic acids, RPO(3)H(2) (R = t-Bu, Ph, c-C(5)H(9), c-C(6)H(11) or 2,4,6-i-Pr(3)-C(6)H(2)), leads to the replacement of the acetate bridge affording tetranuclear copper(II) phosphonates, [Cu(4)(L)(2)(t-BuPO(3))](CH(3)OH)(2)(C(6)H(6)) (1), [Cu(4)(L)(2)(PhPO(3))(H(2)O)(2)(NMe(2)CHO)](H(2)O)(2) (2), [Cu(4)(L')(2)(C(5)H(9)PO(3))](CH(3)OH)(2) (3), [Cu(4)(L')(2)(C(6)H(11)PO(3)](MeOH)(4)(H(2)O)(2) (4) and [Cu(4)(L')(2)(C(30)H(46)P(2)O(5))](PhCH(3)) (5). The molecular structures of 1-4 reveal that a [RPO(3)](2-) ligand is involved in holding the four copper atoms together by a 4.211 coordination mode. In 5, an in situ formed [(RPO(2))(2)O](4-) ligand bridges two pairs of the dinuclear subunits. Magnetic studies on these complexes reveal that the phosphonate ligand is an effective conduit for magnetic interaction among the four copper centers present; a predominantly antiferromagnetic interaction is observed at low temperatures.  相似文献   

15.
Intramolecular ligand hydroxylation was observed during the reactions of dioxygen with the dicopper(I) complexes of the ligands L(1)(L(1)=alpha,alpha'-bis[(2-pyridylethyl)amino]-m-xylene) and L(3)(L(3)=alpha, alpha'-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-m-xylene). The dinuclear copper(I) complex [Cu(2)L(3)](ClO(4))(2) and the dicopper(II) complex [Cu(2)(L(1)-O)(OH)(ClO(4))]ClO(4) were characterized by single-crystal X-ray structure analysis. Furthermore, phenolate-bridged complexes were synthesized with the ligand L(2)-OH (structurally characterized [Cu(2)(L(2)-O)Cl(3)] with L(2)=alpha, alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; synthesized from the reaction between [Cu(2)(L(2)-O)(OH)](ClO(4))(2) and Cl(-)) and Me-L(3)-OH: [Cu(2)(Me-L(3)-O)(mu-X)](ClO(4))(2)xnH(2)O (Me-L(3)-OH = 2,6-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-4-methylphenol and X = C(3)H(3)N(2)(-)(prz), MeCO(2)(-) and N(3)(-)). The magnetochemical characteristics of compounds were determined by temperature-dependent magnetic studies, revealing their antiferromagnetic behaviour [-2J(in cm(-1)) values: -92, -86 and -88; -374].  相似文献   

16.
The 1 : 1 complex [Cu(L)](BF(4))(2)·MeCN (1) of the tetradentate ligand 1-(2-quinolinylmethyl)-1,4,7-triazacyclononane (L) selectively changes its colour in the presence of CN(-) in H(2)O and MeCN (without undergoing decomplexation from the macrocyclic ligand). The same complex in MeCN assumes different colours in the presence of CN(-) or I(-).  相似文献   

17.
Complexes of Cu(II) with N,N'-bis(3-carboxy-1-oxopropanyl)-1,2-ethylenediamine(C(10)H(16)N(2)O(6),L(1)), N,N'-bis(3-carboxy-1-oxopropanyl)-1,2-phenylenediamine(C(14)H(16)N(2)O(6),L(2)), N,N'-bis(2-carboxy-1-oxophenelenyl)-1,2-phenylenediamine(C(22)H(16)N(2)O(6),L(3)) and N,N'-bis(3-carboxy-1-oxoprop-2-enyl)-1,2-phenylenediamine(C(14)H(12)N(2)O(6),L(4)) have been prepared and characterised by elemental analyses, vibrational spectra, magnetic susceptibility measurements, ligand field spectra, EPR spectra, thermal studies and X-ray diffraction spectra. Vibrational spectra indicate coordination of amide and carboxylate oxygens of the ligands giving a MO(4) square planar chromophore. Ligand field and EPR spectra support square planar geometry around Cu(II). [Cu(L(1))] complex has the maximum activation energy and [Cu(L(3))] complex has the minimum activation energy.  相似文献   

18.
You YS  Kim D  Do Y  Oh SJ  Hong CS 《Inorganic chemistry》2004,43(22):6899-6901
A new type of one-dimensional cyanide-bridged Cu(II)--Mo(V) bimetallic assembly, [Cu(cyclam)](3)[Mo(CN)(8)](2)x5H(2)O (cyclam = 1,4,8,11-tetraazacyclotetradecane), was prepared by self-assembling Mo(CN)(8)(3)(-) and Cu(cyclam)(2+) ions in a 2:3 stoichiometric ratio. The overall molecular view is delineated as a novel rope-ladder chain structure. It displays a dominant ferromagnetic behavior within a pentanuclear Cu(3)Mo(2) unit (J(p) = 3.88 cm(-)(1)). Interunit ferromagnetic interactions (J(c) = -0.03 cm(-)(1)) through a longer magnetic pathway of Cu--Mo and weak antiferromagnetic couplings (zJ' = -0.46 cm(-)(1)) resulting from interchain interactions are obtained.  相似文献   

19.
Four new complexes of [14]N4 macrocyclic oxamides, namely [CuL1], [CuL2], [(CuL1)3Mn](ClO4)3 and [(CuL2)3 Mn](ClO4)3 [L1 and L2 are the dianions of 2,3-dioxo-5,6: 3,14-dibenzo-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene (H2L1) and 2,3-dioxo-5,6:13,14-dibenzo-9-methyl-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclo-tetradeca-7,11-diene (H2L2), respectively], have been prepared and characterized. The observed magnetic susceptibilities of the [(CuL1)3Mn] (ClO4)3 complex over the ca. 2–300 K range have been fitted to theoretical equations based on the Heisenberg spin Hamiltonian =–2JMn(Cu1+ Cu2+Cu3) and molecular field approximation. The results indicated that both the intramolecular and intermolecular magnetic interactions are antiferromagnetic with JCuMn= –19.8cm–1 and zJ=–1.41cm–1.  相似文献   

20.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号