首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
制备了系列含氟光敏单体材料, 六氟双酚A双肉桂酸酯(6F-BADE)与含二氟亚甲基结构的肉桂酸酯(FDE-n, n=2, 3, 4). 材料在线性偏振紫外光辐照下均可发生定向光交联反应, 通过红外光谱和凝胶渗透色谱跟踪检测, 表明光交联类型为[2+2]环加成. 单体光聚后形成的取向膜对液晶分子排列效果不同, 6F-BADE取向膜诱导液晶分子垂直排列, FDE-n取向膜诱导液晶分子平行排列. 用原子力显微镜对取向膜表面进行表征, 均未观察到明显的各向异性分布现象. 应用量子力学半经验方法AM1分析发现单体分子极性有较大差异, 认为分子极性的差异是诱导液晶取向不同的主要原因.  相似文献   

2.
一种带肉桂酸酯基的聚酰亚胺液晶光定向材料研究   总被引:3,自引:0,他引:3  
利用双酚A二胺单体(BISDA)与4,4-′(六氟异丙基)-双邻苯二甲酸酐(6FDA)的缩聚反应,制备了含有侧羟基的先驱聚合物PI-OH.通过PI-OH与肉桂酰氯的官能化反应,得到接有肉桂酸酯感光侧基的双酚A型聚酰亚胺PI-CI.用红外光谱(FTIR)、氢核磁共振(1H-NMR)分析、热分析(DSC)等方法表征了上述聚合物的结构和热性能.利用紫外-可见光谱(UV-Vis)对PI-CI的感光性能进行了研究.在线偏振紫外光辐照下,上述聚合物膜表现出二色向性.二向色性的强弱随光照能量的变化存在最大值.经线性偏振紫外光(LPUV)辐射后的PI-CI薄膜能诱导液晶盒中液晶分子发生均匀的定向沿面排列.上述实验表明,该聚酰亚胺是一类具有优良性能的潜在液晶光定向材料.  相似文献   

3.
利用相转移催化剂十六烷基三甲基溴化铵(CTMAB)催化的连二亚硫酸钠引发的苯酚衍生物与含氟碘代烷的氟烷基化反应, 合成了含氟烷基取代的酚类化合物. 研究了双酚A与含氟碘代烷的氟烷基化反应, 得到了一类重要的含氟单体, 即含氟烷基取代的双酚A衍生物. 通过改变含氟碘代烷与双酚A的摩尔比, 可以得到单取代、二取代和四取代的含氟烷基双酚A衍生物.  相似文献   

4.
以含肉桂酸基团的光敏聚酰亚胺为"墨水",通过软印刷技术制备了一种新型的可进一步光交联的表面起伏光栅,研究了各向异性光交联对光栅热稳定性和光栅诱导液晶取向的影响.研究结果表明,在经过紫外光交联后,光栅的热稳定性有较大提高,在经过高于未交联聚酰亚胺的玻璃化转变温度31℃处理2 h后,光栅形貌未发生变化.曝光前后光栅都能诱导液晶分子在表面均一沿面排列.当线性偏振紫外光的偏振方向与光栅沟槽垂直时,光交联能促进光栅对液晶的定向能力,反之则降低的定向能力.通过改变辐照光的偏振方向,调节光栅深度,能控制液晶分子在光栅上的取向方向.将这种软印刷得到的光栅用作液晶定向层,不仅可具有更好的热稳定性和定向能力,还可以调节液晶分子在光栅上的取向方向,实现多畴取向.  相似文献   

5.
合成了两种含有联苯刚性基元的甲基丙烯酸酯单体M1和M2,其中M1为含有可光交联的肉桂酸酯端基的单体.通过溶液自由基聚合,得到一系列含不同比例M1和M2单体单元的聚丙烯酸酯类侧链液晶共聚物.采用1H-NMR、FT-IR等方法对单体和聚合物的结构进行了详细表征.用示差扫描量热法、偏光显微镜以及广角和小角X-射线衍射对单体和聚合物的液晶性进行了研究.结果表明,末端为肉桂酸酯基团的单体M1无液晶性,其均聚物P1有微弱的液晶性,而端基为正丁基的单体M2及其均聚物P9则表现出近晶相液晶行为.共聚物P2~P5均为向列型液晶,P6~P9则为近晶型液晶.随在聚合物中M2单体含量的增加,共聚物的玻璃化转变温度、熔点及清亮点温度均呈现增加趋势.  相似文献   

6.
经含有羟基的二胺单体HAB与二酐单体 4 ,4′ (六氟异丙基 ) 双邻苯二甲酸酐 ( 6FDA)的缩聚反应 ,制备了含有羟基的先驱聚合物PI OH ,通过PI OH上羟基与肉桂酰氯的酯化反应 ,制备了侧链带有肉桂酸酯基团的光敏聚酰亚胺PI CI.用氢核磁共振 ( 1H NMR)分析、傅立叶红外光谱 (FTIR)分析等表征了上述聚合物的结构与感光性能 .用紫外 可见光谱 (UV Vis)等方法研究了PI CI的光交联反应 .聚合物PI CI旋镀膜经线性偏振光聚合技术 (LPP)处理并装配得到的液晶盒可使液晶分子很好地定向沿面排列 .上述实验表明 ,本文所合成的聚酰亚胺定向层材料是一种新的液晶光定向层材料  相似文献   

7.
以双酚A(BPA),碳酸乙二酯(EC)和碳酸二甲酯(DMC)为原料,制备双酚A二元醇(Ⅰ)和双酚A碳酸酯(Ⅱ),并用红外光谱与核磁共振波谱对其结构进行表征.通过Ⅰ与Ⅱ的共缩聚反应及Ⅱ的自聚实现了主链中含有—CH2CH2—单元的双酚A型聚碳酸酯(PC)的非光气法合成,用凝胶渗透色谱法(GPC)和TGA-DSC对PC的分子量和热性质进行分析.结果表明,Ⅱ在240℃自聚6h后产物的Mn可达17.6×103,主链中—CH2CH2—单元的引入,可以降低聚合物的Tg,提高其结晶性,所得聚合物具有良好的热稳定性.  相似文献   

8.
合成了一种新的聚合物聚L-谷氨酸-5-(6'-己二醇肉桂酸酯基)酯,研究了它在空气/水界面的行为、形成LB膜能力、液晶性质及光交联反应.  相似文献   

9.
研制了一种基于液晶取向改变的非标记液晶型免疫传感器,并用于检测赭曲霉素A(0TA).采用戊二醛交联法将OTA同定在由自组装膜修饰的玻璃肇底表面.自组装膜能诱导液晶分子垂直排列,而连接OTA抗体后则扰乱了液晶分子取向的有序排列,导致液晶分子在化学敏感膜表面的取向发生变化,使光学信号的亮度及色彩发生变化,以此实现对OTA的...  相似文献   

10.
室温离子液体中催化合成肉桂酸苄酯   总被引:14,自引:0,他引:14  
研究离子液体中肉桂酸钾和氯化苄经缩合合成肉桂酸苄酯的新方法,并对多种离子液体的作用性能进行了考察.研究结果表明,离子液体中BMImBF4的催化性能最佳,但是肉桂酸苄酯的收率仍不高,只有当相转移催化剂四丁基氯化铵存在时,肉桂酸钾与溶于离子液体中的氯化苄在温和的反应条件下才可高效率地得到肉桂酸苄酯,收率可达96.5%.产物分离简单,离子液体和相转移催化剂形成的双催化体系可以稳定地循环使用5次以上.  相似文献   

11.
A chemical derivatization technique was used to control the pretilt angle of a liquid crystal. A polyvinyl alcohol (PVA) alignment layer, which gives a very low pretilt angle when in contact with the liquid crystal (LC), was reacted with trifluoroacetic anhydride (TFAA) in the gas phase to change polar -OH groups to -OCOCF3 groups. By introduction of the -OCOCF3 groups in to the PVA, we obtained homeotropic alignment of the E7 LC molecules. The homeotropic alignment of E7 LC molecules in contact with the derivatized PVA alignment layer was confirmed by FTIR and microscopy with crossed polarizers. The change of liquid crystal molecules from homogeneous to homeotropic alignment may be caused by the decrease in surface tension of the PVA alignment layer, due to substitution of the polar -OH groups by -OCOCF3 groups in the gas phase derivatization reaction.  相似文献   

12.
The liquid crystal (LC) alignment properties of LC cells fabricated with films of n-alkylsulphonylmethyl-substituted polyoxyethylenes (#S-PEO, #?=?4, 6, 7, 8 and 10), where # is the number of carbon atoms in the n-alkyl side groups having different n-alkyl chain length, were investigated as a function of the rubbing density. The LC cells made from unrubbed #S-PEO (# ≥8) films having more than eight carbon atoms in the n-alkyl side groups showed homeotropic LC alignment. The homeotropic LC alignment behaviour correlated well with the surface energy values of the unrubbed #S-PEO films; homeotropic LC alignment was observed when the surface energy values of the unrubbed #S-PEO films were smaller than about 21.62 mJ m?2. The LC cells made from rubbed #S-PEO (# ≥7) films having more than seven carbon atoms with a rubbing density of 150 showed homeotropic LC alignment. It was also found that the tilt angle of the LCs on the rubbed #S-PEO films was affected not only by the n-alkyl chain length of the polymers, but also by the rubbing density, regardless of the surface energy value of the #S-PEO film.  相似文献   

13.
A chemical derivatization technique was used to control the pretilt angle of a liquid crystal. A polyvinyl alcohol (PVA) alignment layer, which gives a very low pretilt angle when in contact with the liquid crystal (LC), was reacted with trifluoroacetic anhydride (TFAA) in the gas phase to change polar –OH groups to –OCOCF3 groups. By introduction of the –OCOCF3 groups in to the PVA, we obtained homeotropic alignment of the E7 LC molecules. The homeotropic alignment of E7 LC molecules in contact with the derivatized PVA alignment layer was confirmed by FTIR and microscopy with crossed polarizers. The change of liquid crystal molecules from homogeneous to homeotropic alignment may be caused by the decrease in surface tension of the PVA alignment layer, due to substitution of the polar –OH groups by –OCOCF3 groups in the gas phase derivatization reaction.  相似文献   

14.
The alignment of nematic liquid crystals by rubbed polyimide surfaces has been well-studied and developed. A novel polyimide film which induced a homeotropic alignment of the nematic liquid crystal without rubbing or with weak rubbing strength was presented. However, there was a transition from homeotropic to planar alignment of the nematic liquid crystal after strong rubbing. In order to study the transition, the polyimide surface was investigated by atomic force microscopy, surface free energy measurement and angle-resolved analysis X-ray photo-electron spectroscopy before and after rubbing with a velvet fabric. It was found that both the change of surface polarity and surface morphology were not the reasons for the transition. The droop of the side chain on the polyimide surface after the rubbing treatment was detected by angle-resolved analysis X-ray photo-electron spectroscopy. Owing to the special structure of the novel polyimide, the X-ray photo-electron spectroscopy was successfully used for the first time to analyse the conformational change of the side chain of a polymer. In conclusion, the transition of nematic liquid crystal alignment from homeotropic to planar after rubbing was influenced by the side chain conformation of the polyimide.  相似文献   

15.
Polymer-dispersed liquid crystal (PDLC) systems based on polysulfone as carrying matrix and 4-cyano-4?-pentylbiphenyl (5CB) liquid crystal (LC) were obtained as thin transparent films. The PDLC films were prepared by solvent- and thermally induced phase separation methods, with various compositions in the two components. Information on the phase separation was obtained by polarised light optical microscopy, differential scanning calorimetry and scanning electron microscopy. The PDLC composites show well-defined droplets of submicrometric size, around 650 nm for a medium content of LC and around 250 nm for a low one. The droplets show a radial configuration and a homeotropic alignment of the LC molecules within. By contact angle measurement and surface free energy calculations, it was established that self-assembling of aliphatic units of the two composite components, at droplet interface, is the driving force of the homeotropic alignment. Moreover, these data indicated the potential biocompatibility of the studied composites. The photophysical behaviour shows a better light emission of the PDLCs containing bigger droplets.  相似文献   

16.
We synthesised a series of poly(4-styrenesulphonate)/alkyltrimethylammonium (PSS-#Cx, # = 12, 14 and 16; x?=?80, 60, 40 and 20) complexes, where # is the number of carbon atoms in the alkyl groups in alkyltrimethylammonium bromide, and x is the molar content (%) of alkyltrimethylammonium moiety, using polymer analogous reactions to investigate their liquid crystal (LC) alignment properties. In general, the LC cell fabricated using the polymer film having a longer alkyl side group and a higher molar content of alkyl side group showed homeotropic LC alignment behaviour with a pretilt angle of about 90°. The homeotropic LC alignment behaviour was well correlated with the surface energy of the polymer films. Homeotropic LC alignment was observed when the surface energy values of the polymer were smaller than about 44.87 mJ/m2.  相似文献   

17.
ABSTRACT

The properties of the thin films of liquid crystal (LC) molecules can be governed easily by external fields. The anisotropic structure of the LC molecules has a large impact on the electrical and optical properties of the film. The Langmuir monolayer (LM) of LC molecules at the air–water interface is known to exhibit a variety of surface phases which can be transferred onto a solid substrate using the Langmuir?Blodgett (LB) technique. Here, we have studied the LM and LB films of asymmetrically substituted bent-core LC molecules. The morphology of LB film of the molecules is found to be a controlling parameter for aligning bulk LC in the nematic phase. It was found that the LB films of the bent-core molecules possessing defects favour the planar orientation of nematic LC, whereas the LB films with fewer defects show homeotropic alignment. The defect in LB films may introduce splay or bend distortions in the nematic near the alignment layer which can govern the planar alignment of the bulk LC. The uniform layer of LB film facilitates the molecules of nematic to anchor vertically due to a strong van der Waals interaction between the aliphatic chains leading to a homeotropic alignment.  相似文献   

18.
The liquid crystal (LC) alignment properties of LC cells fabricated with films of 2-naphthoxymethyl-substituted polystyrenes with different contents of naphthoxymethyl side groups were investigated. The polymer films exhibited good optical transparency in the visible light region (400–700 nm). The LC cells made from the unrubbed films of polymers having more than 57 mol%?of 2-naphthoxymethyl containing monomeric units showed homeotropic LC alignment with a high pretilt angle of about 90o. Good electro-optical characteristics, such as the threshold voltage, response time, voltage holding ratio and residual DC voltage were observed for the LC cells fabricated with the polymer having 100 mol%?of 2-naphthoxymethyl containing monomeric units as an LC alignment layer.  相似文献   

19.
The Gibbs adsorption isotherm for planar liquid crystal/fluid interfaces is derived using the anisotropic Gibbs-Duhem equation. The Gibbs adsorption isotherm for planar interfaces is used to analyze the adsorption-driven orientation transition in aqueous solutions of anionic surfactants in contact with rodlike uniaxial nematic liquid crystal films. In qualitative agreement with experiments, the model predicts that, as the surfactant concentration increases, the tangential (planar) average molecular orientation of the liquid crystal with respect to the interface undergoes a transition to a normal (homeotropic) orientation. The anchoring coefficient or strength of anisotropic component of the interfacial tension is shown to depend on the surfactant's concentration. Analyzing the response to addition of a co-cation, the model reveals that, as the fractional coverage of the surfactant's chains increases, the interpenetration of liquid crystal molecules between the adsorbed surfactant tails promotes the orientation transition; at even higher surfactant chain concentrations, interpenetration is hindered because of lack of available space and a random surface orientation emerges. Thus, for aqueous surfactant solutions in contact with nematic liquid crystals, increasing the surfactant concentration leads to the following interfacial liquid crystal orientation transition cascade, planar orientation --> homeotropic orientation --> random orientation, which can lead to new sensor capabilities and surface structuring processes.  相似文献   

20.
We report two methods that involve tailoring of the chemical composition of the nematic liquid crystal 4-cyano-4'-pentylbiphenyl to achieve control over the orientational ordering of the liquid crystal on chemically functionalized surfaces. The first method involves the direct addition of 4-cyano-4'-biphenylcarboxylic acid to 4-cyano-4'-pentylbiphenyl. The second method involves exposure of 4-cyano-4'-pentylbiphenyl to ultraviolet light and photochemical generation of a range of products, including 4-cyano-4'-biphenylcarboxylic acid. The addition of the acid or exposure to ultraviolet light accelerated the rate at which the liquid crystal exhibited an orientational transition from planar to perpendicular (homeotropic) alignment on surfaces presenting ammonium groups. The appearance of the homeotropic orientation of the UV-treated 4-cyano-4'-pentylbiphenyl on ammonium-terminated surfaces was dependent on the thickness of the film of liquid crystal (13-50 mum), consistent with a dipolar coupling between the liquid crystal and the electric field associated with an electrical double layer generated at the ammonium surface. Although the addition of 4-cyano-4'-biphenylcarboxylic acid or UV treatment of the liquid crystal also promoted homeotropic orientations on surfaces presenting hydroxyl groups, the orientations of the UV-treated liquid crystal on the hydroxyl-terminated surface did not change with thickness of the film of liquid crystal in the manner observed on the ammonium-terminated surfaces. The latter result indicates that the mechanism leading to homeotropic anchoring on hydroxyl-terminated surfaces is distinct from that on ammonium-terminated surfaces. Measurements performed using polarization modulation infrared reflection-absorption spectroscopy suggest that hydrogen bonding between the 4-cyano-4'-biphenylcarboxylic acid and the hydroxyl-terminated surface is responsible for the homeotropic anchoring on the surface. Finally, the orientation of the liquid crystal on methyl-terminated surfaces was not influenced by the addition of 4-cyano-4'-biphenylcarboxylic acid nor UV treatment. These results illustrate how the chemical composition of liquid crystals can be manipulated to achieve control over their ordering on surfaces that possess chemical functionality relevant to the development of liquid crystal-based sensors and diagnostic tools. We illustrate the utility of this approach by using the tailored liquid crystal to amplify and optically transduce the presence of proteins arrayed on ammonium-terminated surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号