首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
纳米ZnO修饰电极上低电位检测酰胺腺嘌呤二核苷酸和乙醇   总被引:1,自引:0,他引:1  
纳米ZnO修饰玻碳电极在0.23V对烟酰胺腺嘌呤二核苷酸(NADH)的氧化具有很好的催化活性,与裸电极上NADH的氧化电位0.70V相比,该电位降低了0.47V,同时增强了抗干扰能力,并在很大程度上减小了电极污染.以乙醇脱氢酶(ADH)为例,制备了ADH/ZnO修饰电极,可用于脱氢酶底物乙醇的快速、灵敏检测,并具有良好的重现性和稳定性.研究表明纳米ZnO为构建脱氢酶底物的电化学传感器提供了一种新的生物兼容性材料.  相似文献   

2.
《分析试验室》2021,40(5):529-534
基于抗原-抗体特异性识别机理,以单克隆抗体Ab_1修饰的Fe_3O_4磁珠(MB-Ab_1)为反应平台,联合了多克隆抗体Ab_2和乙醇脱氢酶(ADH)修饰的金纳米颗粒(AuNPs)作为信标(AuNPs-Ab_2/ADH),便携式血糖仪(PGM)为检测手段,构建一种前列腺特异性抗原(PSA)检测方法。当PSA存在时,信标AuNPs-Ab_2/ADH通过抗原-抗体特异性识别被捕获到探针MB-Ab_1上,标记的ADH在烟酰胺腺嘌呤二核苷酸(NAD~+)的辅助下将乙醇催化为乙醛的同时,氧化态NAD~+被还原为还原态NADH。而PGM对NADH具有剂量依赖性,故可间接指示ADH的含量,进而用于PSA的检测。在最优条件下,PGM响应信号与PSA浓度的对数呈良好线性关系,线性范围为0.1~50.0 ng/mL,检出限为30 pg/mL。实际血清中PSA的加标回收率为83.3%~114.5%,相对标准偏差为0.05%~0.20%。  相似文献   

3.
本文以乙醇脱氢酶(ADH)和胆红素氧化酶(BOD)为生物催化剂,以碳纳米管为电极材料,构筑了全酶型乙醇/氧气生物燃料电池. 将乙醇脱氢酶负载于单壁碳纳米管(SWCNT)上,采用亚甲基绿(MG)为NADH的电化学催化剂,实现乙醇的生物电化学催化氧化,制备了生物燃料电池ADH/MG/SWCNT/GC的电极(阳极). 同时,将胆红素氧化酶固定于单壁碳纳米管上,通过其直接电子转移,实现了氧气的生物电化学催化还原,制得生物燃料电池的BOD/SWCNT/GC阴极. 据此构筑了全酶型的无膜生物燃料电池,在空气饱和40 mmol·L-1乙醇磷酸缓冲溶液中该电池开路电压为0.53 V,最大输出功率密度为11 μW·cm-2. 以商品化伏特酒作为燃料,该生物燃料电池最大输出功率为3.7 μW·cm-2.  相似文献   

4.
聚苯胺用作乙醇脱氢反应中的电子传递介质   总被引:1,自引:0,他引:1  
脱氢酶(ADH)在电化学氧化还原反应中是很重要的一种酶,但它在催化有机分子脱氢反应时需烟酰胺腺嘌呤二核苷酸(NAD+)参与,后者从底物接收电子生成还原形NADH.脱氢酶电极是根据NADH的电化学氧化产生的阳极电流构成的[1-3].然而NADH与裸体炭电极和铂金电极之间的直接电子传递是非常困难的,往往需一个相当高的过电位[4].另一个问题是生成物易将电极玷污[5,6].克服这些问题的方法是使用均相电子传递介质,例如在底物溶液中加入Meldola蓝、Nile蓝A和NMP+甲替硫酸盐等[7-9],及复相电子传递介质,例如将镍六氰基高铁酸盐固…  相似文献   

5.
将耐尔兰(Nile Blue, NB)分子修饰到碳纳米管(CNT)表面形成NB-CNT纳米复合体, 谱学结果表明, NB不仅能快速、高效地修饰到CNT表面, 而且还能有效地改善CNT在水溶液中的分散性能. 将NB-CNT修饰到玻碳(GC)电极表面制备了NB-CNT/GC电极, 循环伏安结果显示, 其伏安曲线上不仅表现出一对良好的、几乎对称的NB单体的氧化还原峰, 式量电位E0'几乎不随扫速而变化[其平均值为(-0.422±0.002) V (vs. SCE, 0.1 mol/L PBS, pH 7.0)]; 而且还显示出NB聚合体分子的氧化还原峰, E0'为-0.191 V (100 mV/s时). 进一步的实验结果表明, NB和CNT对NADH(即还原型β-烟酰胺腺嘌呤二核苷酸, 又称还原型辅酶I)的电化学氧化具有协同催化作用, 能使其氧化过电位降低多于560 mV; NB-CNT/GC电极还能较好地响应脱氢酶催化底物氧化过程中体系内NADH浓度的变化. 本文对碳纳米管功能化方法具有简单快速、电极制作容易以及催化效率高等优点, NB-CNT/GC电极有望在制作脱氢酶传感器方面得到应用.  相似文献   

6.
烟酰胺腺嘌呤二核苷酸(NAD+/NADH)是目前已知300多种脱氢酶的辅酶,通过对NADH的检测,可以间接测定底物浓度或酶活力。如何利用电化学技术实现NADH的准确、快速、稳定检测,一直是电化学及生物传感领域的重要课题。碳纳米管(CNT)的发现为NADH的电化学检测注入新的生机。本文综述了近年来碳纳米管修饰电极在NADH电化学检测及脱氢酶生物传感器构建中的应用进展,并展望了其应用前景。  相似文献   

7.
用电化学循环伏安法和原位 FTIR反射光谱法研究了 Sb在碳载纳米 Pt膜电极 (nm -Pt/ GC)表面不可逆吸附的电化学特性及酸性介质中乙醇的吸附和电催化氧化特性 .结果指出 ,当扫描电位的上限 Eu≤0 .5 0 V(SCE)时 ,Sbad可以稳定地吸附在 nm-Pt/ GC电极表面 .与未修饰的 nm-Pt/ GC电极上结果相比 ,Sbad修饰的 nm-Pt/ GC/ Sbad/ (nm-Pt/ GC)的催化活性显著增加 .测得当覆盖度θsb=0 .1 3 7时 ,修饰电极对乙醇的电催化活性最高 ,乙醇氧化的峰电位负移了 0 .1 5 V,峰电流增大了 1倍 .原位 FTIR反射光谱的结果从分子水平揭示了 Sb修饰对乙醇氧化反应途径的选择功能 .  相似文献   

8.
采用恒电位阴极还原法在金电极表面一步修饰ZnO纳米棒, 制备成ZnO纳米棒修饰电极. 扫描电子显微镜(SEM)和X射线衍射(XRD)结果显示制得的ZnO为直径约100 nm的六棱柱状纤锌矿晶体纳米棒. 使用ZnO纳米棒修饰的金电极研究细胞色素c的直接电化学行为, 结果表明: ZnO纳米棒修饰的金电极能有效探测到细胞色素c的铁卟啉辅基在不同价态下的电化学行为; 细胞色素c吸附后, ZnO纳米棒修饰的金电极对过氧化氢的电流响应呈现良好的线性关系.  相似文献   

9.
戴志晖  方敏 《分析测试学报》2006,25(Z1):199-200
β-烟酰胺腺嘌呤二核苷酸(NADH),俗称还原型辅酶, 是参与酶催化反应中的一种重要的辅酶, 大约有几百种脱氢酶催化底物反应后能引起NADH含量的变化,因此,电化学检测NADH是传感器研究中1个重要的课题.由于在电极上的氧化有较大的过电位并且不可逆[1],如果在高电位下检测 NADH,试样中其他的电活性物质就会干扰测定,并且NADH在高电位氧化过程中会发生副反应而污染电极,使测定重复性变差[2].人们正努力寻找能够降低NADH氧化过电位的新的材料.近来,介孔分子筛子以其独特的结构和催化作用能够为电子传递提供环境以及可以抵抗生物降解而受到关注[3].介孔分子筛具有大的比表面, 高机械、热、化学稳定性, 好的吸附和渗透性,有着适度的维度能够作为一种通用的纳米反应器.这里采用Ti-MCM-41修饰GCE来降低NADH的过电位.实验表明该修饰电极对NADH的催化电流很大,稳定性好,响应速度快,实现了对NADH的低电位检测.  相似文献   

10.
本文以强烈吸附在石墨电极上的亚甲绿作为电子传递媒介体构成修饰电极.在-0.25V~+0.10V电位区间内,吸附态的亚甲绿表现出相当可逆的氧化还原行为,电极反应有一个电子和一个质子参加.在pH=7.0的磷酸盐缓冲溶液中,其式量电位 E  °’  为-0.14V,表观电子传递速率常数K_(app)为4.4s~(-1).亚甲绿修饰电极对还原型烟酰胺腺嘌呤二核苷酸(NADH)的电化学氧化具有明显的催化作用,可使NADH的氧化过电位降低500mV,它作为NADH的电化学安培检测器具有很高的灵敏度和良好的重现性.文中还用X光电子能谱(ESCA)、衰减全反射红外光谱(ATR)等现代分析技术对修饰电极进行了表征.  相似文献   

11.
Titanium‐containing MCM‐41 (Ti‐MCM‐41) modified glassy carbon electrode (GCE) can exhibit an excellent electrocatalytic activity towards the oxidation of β‐Nicotinamide adenine dinucleotide (NADH). A dramatic decrease in the over‐voltage of NADH oxidation reaction is observed at 0.28 V (vs. SCE). The modified electrode is found to be stable and reproducible. The electrode shows a linear response for a wide range of 10–1200 μM NADH and the detection limit is 8.0 μM. Ti‐MCM‐41 mesoporous molecular sieves provide an efficient matrix for development of NADH biosensors and the prepared electrode not only can be used to detect the concentration of NADH in biochemical reaction, but also as the potential matrix of the construction of dehydrogenases biosensor.  相似文献   

12.
The oxidation of NADH on electropolymerizing methylene green (MG)-modified glassy carbon electrode (GCE) is described. The modified electrode shows an excellent electrocatalytic activity toward NADH oxidation, reducing its overpotential by about 650 mV and exhibits a wide linear range of 5.6–420 μM NADH with the detection limit of 3.8 μM. The electrode displays a good reproducibility and stability and the coexisting species does not affect the determination of NADH. The application in the amperometric biosensing of ethanol using alcohol dehydrogenase enzyme (ADH) also has been demonstrated with this electrode. MG-modified GCE can not only be used to detect NADH in biochemical reaction, but also can be used as the potential matrix of the construction of dehydrogenases biosensor.  相似文献   

13.
Manesh KM  Santhosh P  Gopalan A  Lee KP 《Talanta》2008,75(5):1307-1314
A new modified electrode is fabricated by dispersing gold nanoparticles onto the matrix of poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonic acid), PEDOT–PSS. The electrocatalytic activity of the PEDOT–PSS-Aunano electrode towards the oxidation of β-nicotinamide adenine dinucleotide (NADH) is investigated. A substantial decrease in the overpotential (>0.7 V) has been observed for the oxidation of NADH at the PEDOT–PSS-Aunano electrode in comparison to the potential at PEDOT–PSS electrode. The Au nanoparticles dispersed in the PEDOT–PSS matrix prevents the fouling of electrode surface by the oxidation products of NADH and augments the oxidation of NADH at a less positive potential (+0.04 V vs. SCE). The electrode shows high sensitivity to the electrocatalytic oxidation of NADH. Further, the presence of ascorbic acid and uric acid does not interfere during the detection of NADH. Important practical advantages such as stability of the electrode (retains 95% of its original activity after 20 days), reproducibility of the measurements (R.S.D.: 2.8%; n = 5), selectivity and wide linear dynamic range (1–80 μM; R2 = 0.996) are achieved at PEDOT–PSS-Aunano electrode. The ability of PEDOT–PSS-Aunano electrode to promote the electron transfer between NADH and the electrode makes us to fabricate a biocompatible dehydrogenase-based biosensor for the measurement of ethanol. The biosensor showed high sensitivity to ethanol with rapid detection, good reproducibility and excellent stability.  相似文献   

14.
Titanium‐containing MCM‐41 (Ti‐MCM‐41) modified glassy carbon electrode (GCE) can exhibit an excellent electrocatalytic activity towards the oxidation of β‐Nicotinamide adenine dinucleotide (NADH). A dramatic decrease in the overvoltage of NADH oxidation reaction is observed at 0.28 V vs. SCE. The application in the amperometric biosensing of ethanol using alcohol dehydrogenase enzyme (ADH) also has been demonstrated with this material. The proposed sensor shows a highly sensitivity, an acceptable reproducibility and a good stability. The linear range of ethanol is 25–1000 μM and the detection limit is 8.0 μM. Ti‐MCM‐41 modified electrode not only can be used to detect the concentration of NADH in biochemical reaction, but also as the potential matrix for the construction of dehydrogenases sensor.  相似文献   

15.
The electrochemical oxidation of NADH and its model compound, N-benzyl-1,4-dihydronicotinamide (DHN), has been studied at gold electrode modified with self-assembled monolayer of terminally substituted thiols/disulfide, i.e., cystamine (CYST), mercaptopropionic acid (MPA) and mercaptoethanol (ME). A substantial decrease in the overpotential (approximately 250 mV) when compared to the bare electrode has been observed for the oxidation of NADH at the monolayer-modified electrodes, containing no so-called redox mediator. The bare electrode shows an ill-defined voltammetric peak for the oxidation of DHN, whereas the monolayer-modified electrodes showed a well-defined voltammetric peak. The monolayer assembly on the gold electrode prevents the fouling of electrode surface by the oxidation products, which favors the oxidation at the less positive potential. The square-wave voltammograms showed a sharp voltammetric signal for the oxidation of NADH at all the monolayer-modified electrodes. All the monolayer-modified electrodes showed a linear current response to change in the NADH concentration in its range of 25-300 microM and their sensitivities were found to be 0.005+/-0.0003, 0.0063+/-0.0002 and 0.0052+/-0.0003 microA/microM for CYST-Au, ME-Au and MPA-Au electrodes, respectively. The hydrodynamic voltammograms obtained at the rotating CYST-Au electrode for the oxidation of NADH and DHN were used to estimate the diffusion coefficient of DHN, and the number of electrons involved in the oxidation process of NADH.  相似文献   

16.
利用静电层层组装的方式在印刷电极表面制备了(多壁碳纳米管/邻苯二甲酸二乙二醇二丙烯酸酯(PDDA))n多层膜,采用电位扫描电聚合法在修饰有多层膜的印刷电极表面聚合甲苯胺蓝,制备了聚甲苯胺蓝-(多壁碳纳米管/PDDA)n杂化膜修饰电极。扫描电镜实验表明,多壁碳纳米管均匀分布在杂化膜中,且多壁碳纳米管的掺杂使杂化膜表现出明显的多孔性。电化学实验表明,杂化膜具有良好的导电性且多壁碳纳米管的掺杂显著增加了聚甲苯胺蓝在电极表面的担载量,提高了检测灵敏度。在pH7.4的磷酸盐缓冲液中,杂化膜修饰电极对β-烟酰胺腺嘌呤二核苷酸(NADH)的氧化具有良好的催化作用,与裸电极相比氧化电位降低了560 mV,灵敏度明显提高。在8.7×10-8~1.3×10-4mol/L范围内,NADH的浓度与氧化电流呈线性关系,检出限为2.8×10-8mol/L,该修饰电极可用于NADH的测定。  相似文献   

17.
The nanostructured poly(aniline-co-2-amino-4-hydroxybenzenesulfonic acid) (PAAHB) was synthesized on a glassy carbon (GC) electrode using potentiostatic method. The SEM imagines of PAAHB films show that the morphology and particle sizes of PAAHB depend on the potential used for PAAHB synthesis. It was found that PAAHB can catalyze NADH oxidation; and its catalytic activity depends on particle sizes of PAAHB. The peak potential of NADH oxidation shifts from 0.63 V at the bare GC electrode to 0.34 V at the PAAHB electrode, and its oxidation current is much higher than that at the bare GC electrode at 0.34 V in the same solution with pH 7.0. Experimental evidence for the catalytic mechanism of NADH oxidation was first obtained via measurements of the in situ chemical-ESR spectra and the potential of the copolymer electrode.  相似文献   

18.
中位-四(对-磺基苯基)卟啉的铁、锰配合物(FeTPPS和MnTPPS)用作NADH氧化的催化剂,均相溶液中的反应动力学用紫外可见光谱测定。结果表明,在除氧的中性溶液中FeTPPS和MnTPPS降低了NADH在玻碳电极上氧化的过电位,过程用EC再生机理解释。在氧饱和的溶液中MTPPS起电子转移中介体的作用促进NADH氧化,其还原态被O~2氧化而生。测得FeTPPS和NADH反应的速率常数为3.3mol^-^1.L.s^-^1,而MnTPPS和NADH反应的速率常数约为FeTPPS的1/2。讨论了MTPPS作为NADH仿生氧化催化剂的前景。  相似文献   

19.
The electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) was studied on nanoTiO2 modified sol‐gel electrode, using cyclic voltammetry, chronoamperometry and differential pulse voltammetry as diagnostic techniques. It is demonstrated that TiO2 nanoparticles on sol‐gel network catalyze the oxidation of NADH in the absence of any electron transfer mediators. Effect of various parameters such as pH, scan rate, TiO2 percentage on the response of modified electrode was studied. In addition, scanning electron microscopy (SEM) was used to characterize the surface morphology of the spots. A dynamic range between 0.5–50 μM with detection limit of 0.35 μM was obtained with DPV studies. This method was successfully used for determination of NADH in cucumber cotyledons samples. The electrode showed relatively good stability over more than 2 months.  相似文献   

20.
Stable lipid film was made by casting dipalmitoylphosphatidylcholine (DPPC) and rutin onto the surface of a glassy carbon (GC) electrode. The electrochemical behavior of rutin in the DPPC film was studied. The modified electrode coated with rutin gave quasi-reversible reduction-oxidation peak on cyclic voltammogram in the phosphate buffer (pH 7.4). The peak current did not decrease apparently after stored at 4°C for 8 hours in refrigerator. This model of biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by rutin. Rutin in the film acts as a mediator. The modified electrode shows a great enhancement and the anodic peak potential was reduced by about 220 mV in the oxidation of 5×10−3 mol L−1 NADH compared with that obtained at a bare glassy carbon electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号